Ni-Mo-P coatings are obtained at the surface of ceramic substrate by electroless deposition using palladium as a surface catalyst. The influence of catalyst activation conditions on coatings' properties was assessed by structural, morphological, electrical, mechanical measurements and adhesion strength by using X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, Hall effect and nanoindentation techniques, respectively. The results indicated the formation of dense, continuous and uniform coatings consisting mainly of Ni. The coatings obtained at 300 °C for 12 h exhibited the best electrical properties, namely resistivity of 9.32 μΩ cm, smaller roughness (R a 0.090 µm) and average mechanical properties. The adhesion tests showed a firm adherence of the Ni-Mo-P coatings to the ceramic surface. The results of this study could offer an approach for obtaining conducting ceramic substrates in order to be employed in photovoltaic applications. The performance of demonstrative heterojunction solar cell obtained with such metallized ceramic is indicative of the high potential of the Ni-Mo-P electroless coatings for functional ceramics.
Contamination of water by heavy metals is a major environmental concern due to the potential ecological impact on human health and aquatic ecosystems. In this work, we studied the chemical modification of various fruit peels such as banana (BP), granadilla (GP), and orange ones (OP) in order to obtain novel bio-adsorbents to improve the removal of Zn(II) ions from 50 mg·L−1 synthetic aqueous solutions. For this purpose, sodium hydroxide and calcium acetate were employed to modify the fruit peels. The moisture, extractives, lignin, hemicellulose, and cellulose contents of the raw materials were determined according to ASTM standards. The obtained bio-adsorbents were characterized by scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). The results showed the OP bio-adsorbents performed better, especially when the concentration of the modifier solutions increased, e.g., the OP particles modified using 0.8 M NaOH and Ca(CH3COO)2 solutions resulted in 97% removal of Zn(II) contaminating ions and reached a maximum adsorption capacity of 27.5 mg Zn per gram of bio-adsorbent. The adsorption processes were found to follow a pseudo-second order model. The error function sum of square error indicated the Freundlich isotherm (non-linear regression) as best fit model. The obtained results are particularly interesting for material selection in wastewater treatment technologies based on contaminant adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.