International audienceAmbient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing as it has developed over the past several years and is intended to explain and justify this development through salient examples. The ambient noise data processing procedure divides into four principal phases: (1) single station data preparation, (2) cross-correlation and temporal stacking, (3) measurement of dispersion curves (performed with frequency–time analysis for both group and phase speeds) and (4) quality control, including error analysis and selection of the acceptable measurements. The procedures that are described herein have been designed not only to deliver reliable measurements , but to be flexible, applicable to a wide variety of observational settings, as well as being fully automated. For an automated data processing procedure, data quality control measures are particularly important to identify and reject bad measurements and compute quality assurance statistics for the accepted measurements. The principal metric on which to base a judgment of quality is stability, the robustness of the measurement to perturbations in the conditions under which it is obtained. Temporal repeatability, in particular, is a significant indicator of reliability and is elevated to a high position in our assessment, as we equate seasonal repeata-bility with measurement uncertainty. Proxy curves relating observed signal-to-noise ratios to average measurement uncertainties show promise to provide useful expected measurement error estimates in the absence of the long time-series needed for temporal subsetting
[1] We demonstrate that the coherent information about the Earth structure can be extracted from the ambient seismic noise. We compute cross-correlations of vertical component records of several days of seismic noise at different pairs of stations separated by distances from about one hundred to more than two thousand kilometers. Coherent broadband dispersive wavetrains clearly emerge with group velocities similar to those predicted from the global Rayleigh-wave tomographic maps that have been constrained using ballistic surface waves. Those results show that coherent Rayleigh waves can be extracted from the ambient seismic noise and that their dispersion characteristics can be measured in a broad range of periods. This provides a source for new types of surfacewave measurements that can be obtained for numerous paths that could not be sampled with the ballistic waves and, therefore, can significantly improve the resolution of seismic images.
Seismic velocity changes and nonvolcanic tremor activity in the Parkfield area in California reveal that large earthquakes induce long-term perturbations of crustal properties in the San Andreas fault zone. The 2003 San Simeon and 2004 Parkfield earthquakes both reduced seismic velocities that were measured from correlations of the ambient seismic noise and induced an increased nonvolcanic tremor activity along the San Andreas fault. After the Parkfield earthquake, velocity reduction and nonvolcanic tremor activity remained elevated for more than 3 years and decayed over time, similarly to afterslip derived from GPS (Global Positioning System) measurements. These observations suggest that the seismic velocity changes are related to co-seismic damage in the shallow layers and to deep co-seismic stress change and postseismic stress relaxation within the San Andreas fault zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.