In the stressed animal, the vasoactive hormones vasopressin and angiotensin-II and the neurotransmitter noradrenaline induce liver cells to release glucose from glycogen. The intracellular signal that links the cell-surface receptors for noradrenaline (alpha 1) and vasoactive peptides to activation of glycogenolysis is known to be a rise in the cytoplasmic concentration of free calcium ions (free Ca). The receptors for these agonists induce the hydrolysis of phosphatidylinositol 4,5-bisphosphate, a minor plasmalemma lipid, to produce inositol trisphosphate and diacylglycerol. Inositol trisphosphate has been shown to mobilize intracellular calcium in hepatocytes. We show here, by means of aequorin measurements in single, isolated rat hepatocytes, that the free Ca response to these agonists consists of a series of transients. Each transient rose within 3 s to a peak free Ca of at least 600 nM and had a duration of approximately 7 s. The transients were repeated at intervals of 0.3-4 min, depending on agonist concentration. Between transients, free Ca returned to the resting level of approximately 200 nM. Clearly, the mechanisms controlling free Ca in hepatocytes are more complex than hitherto suspected.
Aequorin measurements of cytosolic free Ca2+ in single rat hepatocytes show that ADP and ATP, thought to act through the same P2Y purinoceptor, elicited very different responses in the majority of cells tested. ADP invariably induced transients of short duration (approx. 9 s), whereas ATP induced either similar transients or transients with a much longer duration (approx. 49 s). We explain this variability in terms of two separate purinoceptors on rat hepatocytes, one of which responds to either ATP or ADP to generate free-Ca2+ transients of short duration, and the other responds to ATP only, with transients of longer duration.
It has been established that atherosclerotic coronary artery disease is more frequent and more severe in diabetic compared to non-diabetic subjects, but the reason for the excess risk of developing coronary macroangiopathy in diabetes remains incompletely characterized. Various biochemical mechanisms speculated to being at the "heart" of diabetic cardiac and coronary macroangiopathy are reviewed in the present article. In doing so, this article presents evidence that the labyrinthine interactions of hyperglycemia, insulin resistance, and dyslipidemia in diabetes result in a pro-atherogenic phenotype. Furthermore, the diabetic milieu yields a complex (dys)metabolic environment characterized by chronic inflammation, procoagulability, impaired fibrinolysis, neovascularization abnormalities, and microvascular defects that cumulatively alter blood rheology, artery structure, and homeostasis of the endothelium. The contributory influences of these factors in the pathophysiology of coronary artery disease in diabetes are also discussed.
The effect of the phorbol esters phorbol 12-myristate 13-acetate (TPA) and phorbol 12,13-dibutyrate (PDB) on changes in free Ca2+ concentration ([Ca2+]i) in single rat hepatocytes, microinjected with the photoprotein aequorin, were investigated. [Arg8]vasopressin and phenylephrine induced a series of repetitive [Ca2+]i transients. Phorbol esters inhibited the alpha 1-adrenoceptor-induced response; sub-nanomolar concentrations decreased the transient frequency, and higher concentrations abolished the transients. The inhibitory effect of PDB was readily reversible. Phorbol esters were less effective in decreasing the frequency of [Arg8]-vasopressin-induced transients, and the inhibition could be overcome by high [Arg8]vasopressin concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.