In this paper, we investigated the heat to electricity conversion efficiency of In1-xGaxAsySb1-y radioisotope thermophotovoltaic (RTPV) converter with x=0.8 and y=0.18, taking account of the photons with energy below the cells bandgap using a comprehensive analytical process. This was done with a computer program designed for this reason, which allowed the computation of the cell performance under a variety of specified incident radiation spectra as well as a variety of material parameters. The results show that for an emissivity value of 0.78, a cell thickness of about 7µm with low front recombination velocity (700cm/s), a conversion efficiency greater than 29 % can be obtained for radiator's temperature of 1300°k at ambient temperature. This efficiency will decrease as the cell temperature increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.