Developmental changes that influence the results of removal of afferent input on the survival of neurons of the anteroventral cochlear nucleus (AVCN) of mice were examined with the hope of providing a suitable model for understanding the cellular and molecular basis for these developmental changes in susceptibility. We performed unilateral cochlear ablation on wild-type mice at a variety of ages around the time of hearing onset to determine developmental changes in the sensitivity of AVCN neurons to afferent deprivation. In postnatal day 5 (P5) mice, cochlea removal resulted in 61% neuronal loss in the AVCN. By age P14, fewer than 1% of AVCN neurons were lost after this manipulation. This reveals a rather abrupt change in the sensitivity to disruption of afferent input, a critical period. We next investigated the temporal events associated with neuron loss after cochlea removal in susceptible animals. We demonstrate that significant cell loss occurs within 48 hours of cochlea removal in P7 animals. Furthermore, evidence of apoptosis was observed within 12 hours of cochlea removal, suggesting that the molecular events leading to cell loss after afferent deprivation begin to occur within hours of cochlea removal. Finally, we began to examine the role of the bcl-2 gene family in regulating afferent deprivation-induced cell death in the mouse AVCN. AVCN neurons in mature bcl-2 knockout mice demonstrate susceptibility to removal of afferent input comparable to neonatal sensitivity of wild-type controls. These data suggest that bcl-2 is one effector of cell survival as these cells switch from afferent-dependent to -independent survival mechanisms.
Deprivation of afferent input in young animals results in transneuronal degeneration of postsynaptic sensory neurons in a variety of species and sensory pathways. Transneuronal degeneration is generally not seen in adult animals. The cellular and molecular basis for this dramatic developmental change in susceptibility is not understood. One possibility is that genes involved in the apoptotic process are involved in determining cell death or survival after afferent deprivation. To further investigate this possibility, we performed unilateral cochlear ablation on wild-type and bcl-2-overexpressing mice at a variety of ages. In postnatal day 5 (P5) or P8 wild-type mice, cochlea removal resulted in a 54% or 31% neuronal loss in the anteroventral cochlear nucleus (AVCN), respectively. When the same manipulation is performed on a P30 mouse, no loss of AVCN neurons occurs. This confirmed a rather abrupt change in the sensitivity to disruption of afferent input, a critical period. However, in littermates expressing bcl-2 under a neuron-specific enolase promoter, no significant loss of AVCN neurons was observed at any age after unilateral cochlear ablation. Furthermore, wild-type mice demonstrate rapid expression of activated caspase-3 in AVCN neurons within hours of deafferentation, whereas bcl-2-overexpressing mice do not. This suggests that bcl-2 can influence cell survival after removal of afferent input during the critical period and is consistent with the hypothesis that caspase-3 is one effector of cell death under these circumstances. These data are the first to indicate that known apoptotic mediators can play a role in central neuronal plasticity in models of afferent deprivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.