Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defenses and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and self-processed mature forms. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin, and a latency flap in the zymogen. Dramatic rearrangement of up to 20 Å of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain. Periodontal disease (PD)5 affects the tissues that surround and support the teeth and may lead to loosening and eventual loss of teeth if untreated. It is caused by bacteria and affects mildly 90% and severely 10% of the population worldwide (1, 2). In addition, symptoms of PD appear in a series of systemic diseases due to its inflammatory and infective character (2, 3). Present day treatment and curettage of severe PD includes the mechanical cleansing of the affected area and is efficient in general. However, it is costly, time consuming, and painful and needs frequent repetition. In addition, it may entail the indiscriminate usage of antibiotics, which contributes to the spread of antibiotic-resistant strains (2, 4). Consequently, there is a need for innovative and specific therapeutic approaches against PD.Prevotella intermedia is a major bacterial periodontal pathogen in humans together with Porphyromonas gingivalis, among others (5, 6). Such bacteria colonize the gingival crevice and produce virulence factors that cause disease. Bacterial infection leads to the bacterial secretion or induction of host overproduction of proteolytic enzymes such as bacterial collagenases, matrix metalloproteases, and serine and cysteine proteases (CPs) (2, 7, 8). These proteases destroy host tissue and compromise host defenses. In addition, proteases may give rise to fibrinolytic activity and inactivate components of the bloodcoagulation cascade such as the protease inhibitors, ␣ 1 -proteinase inhibitor and ␣ 2 -macroglobulin. Proteolysis further covers alimentary requirements, because most of bacterial nutrition is obtained from degraded periodontal tissue and tissue fluid (9).Most studies on the bacterial proteolytic armamentarium in PD have been performed with P. gingivalis (9). In contrast, the factors governing P. intermedia infection, a black-pig...
Cyclisation of N-terminal glutamine and/or glutamate to yield pyroglutamate is an essential posttranslational event affecting a plethora of bioactive peptides and proteins. It is directly linked with pathologies ranging from neurodegenerative diseases to inflammation and several types of cancers. The reaction is catalysed by ubiquitous glutaminyl cyclotransferases (QCs), which present two distinct prototypes. Mammalian QCs are zinc-dependent enzymes with an alpha/beta-hydrolase fold. Here we present the 1.6-A-resolution structure of the other prototype, the plant analogue from Carica papaya (PQC). The hatbox-shaped molecule consists of an unusual five-fold beta-propeller traversed by a central channel, a topology that has hitherto been described only for some sugar-binding proteins and an extracellular nucleotidase. The high resistance of the enzyme to denaturation and proteolytic degradation is explained by its architecture, which is uniquely stabilised by a series of tethering elements that confer rigidity. Strikingly, the N-terminus of PQC specifically interacts with residues around the entrance to the central channel of a symmetry-related molecule, suggesting that this location is the putative active site. Cyclisation would follow a novel general-acid/base working mechanism, pivoting around a strictly conserved glutamate. This study provides a lead structure not only for plant QC orthologues, but also for bacteria, including potential human pathogens causing diphtheria, plague and malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.