, N.; Romero Gil, I.; Seco, A.; Ferrer, J. (2012). Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresource Technology. 126:247-253. doi:10.1016Technology. 126:247-253. doi:10. /j.biortech.2012 ABSTRACTThis study investigated the removal of nitrogen and phosphorus from the effluent of a submerged anaerobic membrane bioreactor (SAnMBR) by means of a lab-scale photobioreactor in which algae biomass was cultured in a semi-continuous mode for a period of 42 days. Solids retention time was 2 days and a stable pH value in the system was maintained by adding CO 2 . Nitrogen and phosphorus concentrations in the SAnMBR effluent fluctuated according to the operating performance of the bioreactor and the properties of its actual wastewater load. Despite these variations, the anaerobic effluent proved to be a suitable growth medium for microalgae (mean biomass productivity was 234 mg·l -1 ·d -1 ), achieving a nutrient removal efficiency of 67.2% for ammonium (NH 4 + -N) and 1 97.8% for phosphate (PO 4 -3 -P). When conditions were optimum, excellent water quality with very low ammonium and phosphate concentrations was obtained. KeywordsMicroalgae; nutrient removal; submerged anaerobic membrane bioreactor; wastewater.
The key driver for anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment is enabling the transition to energy neutral wastewater treatment. However, municipal wastewater delivers a comparatively constrained methane yield, which means energy conservation must be prioritised to achieve the proposed energy neutral ambition. A critical focus on membrane fouling is therefore warranted, as membrane operation represents the primary energy demand in MBRs. This review seeks to quantify the characteristics of the prevailing AnMBR biological suspension and to ascertain whether knowledge transfer exists between fouling characteristics in aerobic and anaerobic MBRs for municipal applications. Analysis of literature data revealed that the level of extractable extracellular polymeric substrate is slightly higher in aerobic MBRs than in anaerobic MBRs. However, AnMBR comprises considerably higher soluble microbial product concentrations, which have been widely reported to increase fouling propensity in aerobic systems. More distinct is the difference in the colloidal and fine solids fraction (between 1 and 10–15 μm), which is likely to dominate fouling in anaerobic systems and limit knowledge transfer from aerobic MBRs. Literature data on energy production was compared to that employed for membrane operation, and evidences that despite the challenging character of the particle matrix, energy neutral operation is achievable for AnMBR applied to municipal wastewater treatment.
The fate of organic micropollutans (MPs) in a membrane system based on microfiltration (MF) and reverse osmosis/nanofiltration (RO/NF) has been investigated for the case of wastewater reuse. Both an operating full-scale water reuse plant and a pilot plant were employed, with 22 individual organic compounds at their ambient concentrations studied for the former and the latter employing two target compounds over a range of feed concentrations. Results revealed removal efficiencies higher than 75% for most compounds in the full-scale plant, though mass flow studies on all streams revealed a significant imbalance of material for some compounds. Rejection efficiencies measured for candidate commercial NF and RO membranes tested at pilot scale challenged with a pharmaceutically active compound (ibuprofen, IBU) and an endocrine-disrupting chemical (nonylphenol, NP) exceeded 99%. Permeate concentrations were 0.005-0.14 microg/L for IBU and below the limit of detection for NP. A mass balance of the MPs for the full-scale plant across the MF and RO stages revealed a significant imbalance associated with the challenge of accurate determination of low concentrations. Differences in pilot plant and full-scale data were otherwise attributed to the impact of membrane ageing (and specifically hydrolysis) on RO rejection of the MPs examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.