In this study, glass fiber-reinforced epoxy-nanoclay composite plates, with I.30E clay contents ranging between 0 and 5 wt.%, were manufactured by hand layup with hot pressing. Flexural strength of unexposed fiber-reinforced epoxy-nanoclay reached an optimum improvement of 11% for 1.5 wt.%. Scanning electron microscope analysis showed that at this clay loading, better interfacial adhesion of clay with glass fibers was achieved. At higher clay loadings, clay agglomeration and presence micro-voids led to less strength improvement. The maximum water uptake was found to decrease with increasing clay loading and moisture diffusion at 80℃ was about 80% higher than that at room temperature. Post exposure flexural tests revealed a behavior similar to that of unexposed samples with nanoclay loading of 1.5 wt.% leading to optimal flexural properties. Exposure to moisture resulted in degradation of fiber-reinforced epoxy-nanoclay flexural properties with about 36% reduction in strength for 80℃ and 8% for room temperature.
Unsaturated polyester/nanoclay (UP/NC) composites were developed using an optimized process, which combines high shear mixing (HSM) and ultrasonication. Different types of organically modified nanoclays (Cloisites 10A and 20A and Nanomer I.30E) were considered with I.30E resulting in the best morphology with an exfoliated structure. This and the higher aspect ratio of I.30E lead to its better performance under tensile and flexural testing. Different loadings of I.30E (0, 1, 2, 3, and 4 wt%) were thus used to manufacture UP/NC nanocomposites and test their resistance to water uptake as well as the moisture ingress effects on their mechanical properties. The results showed that the addition of I.30E nanoclay enhanced the hydrophobicity of the nanocomposite with a maximum improvement of about 40% at 4 wt% of NC loading. Flexural test results revealed relative degradation in the flexural properties of neat UP and UP/NC, due to moisture uptake. However, the reduction in flexural properties was found to be minimal at the optimum nanoclay loading of 3 wt%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.