In this paper we study the nonsubsampled contourlet transform. We address the corresponding filter design problem using the McClellan transformation. We show how zeroes can be imposed in the filters so that the iterated structure produces regular basis functions. The proposed design framework yields filters that can be implemented efficiently through a lifting factorization. We apply the constructed transform in image noise removal where the results obtained are comparable to the state-of-the art, being superior in some cases.
Semantic image inpainting is a challenging task where large missing regions have to be filled based on the available visual data. Existing methods which extract information from only a single image generally produce unsatisfactory results due to the lack of high level context. In this paper, we propose a novel method for semantic image inpainting, which generates the missing content by conditioning on the available data. Given a trained generative model, we search for the closest encoding of the corrupted image in the latent image manifold using our context and prior losses. This encoding is then passed through the generative model to infer the missing content. In our method, inference is possible irrespective of how the missing content is structured, while the state-of-the-art learning based method requires specific information about the holes in the training phase. Experiments on three datasets show that our method successfully predicts information in large missing regions and achieves pixel-level photorealism, significantly outperforming the state-of-the-art methods.
Abstract-This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via tensor train (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via tensor train (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher-orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.
Abstract. We present a general method for blind image deconvolution using Bayesian inference with super-Gaussian sparse image priors. We consider a large family of priors suitable for modeling natural images, and develop the general procedure for estimating the unknown image and the blur. Our formulation includes a number of existing modeling and inference methods as special cases while providing additional flexibility in image modeling and algorithm design. We also present an analysis of the proposed inference compared to other methods and discuss its advantages. Theoretical and experimental results demonstrate that the proposed formulation is very effective, efficient, and flexible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.