In recent times, large waste is produced especially in an urban area due to population with careless handling which calls for worries. Hence, the study determines the effect of Akanran dumpsite on the groundwater quality for drinking and domestic purposes. It employs the geophysical and geochemical methods. Wenner configuration was adopted with constant electrode separation ranging from 5 to 25 m to acquire five profiles within and outside the dumpsite and processed using DIPROWIN 4.01 software. Soil and water samples were collected and analysed. The 2-D pseudosection revealed a very low resistivity value which is less than 10 ohm-meter and is suspected to be leachate infiltration which migrates to a depth of 7 m. The results of soil analysis show that clay ranges between 9.61 - 18.8 %., silt between 9.27 – 19.7 % and an average bulk density of 1.48 (relatively high for a sandy loam) which suggests that infiltration of the leachate is minimal. The pH of the water sample analysis obtained is 6.9, suggesting acidic concentrates in the groundwater of the study area. However, this pH value for drinking water is within the permissible level of 6.5 – 8.5 indicating that the groundwater in the study area is suitable for drinking and also for other purposes. A Nitrate level of 2.56 mg/l in the water sample falls within 50.0 mg/l, and nitrite level of 0.09 mg/l which is moderate when compared to the permissible level limit of 0.20 mg/l. The concentration of heavy metals in hand-dug well sample from Akanran dumpsite are Zn (1.81 mg/l), Cu (0.38 mg/l), Cr (0.003 mg/l) which are within the permissible level limit and Pb (0.21 mg/l) which recorded high metal concentration which may suggest that the dumpsite contain waste metals which may leach down the soil. In conclusion, the groundwater in the area of the survey is safe and there is possible contamination with time.
This research work focused on the use of direct current resistivity method to analyse data collected from refuse dumpsite at eastern bye pass Minna. The study area lies approximately on longitude 60 36’19.84”E to 6036’23.15”E and latitude 90 38’04.97”N to 9038’08.25”N, with a dimension of 100m x 100m within the basement complex of north central Nigeria. Vertical Electrical Sounding was carried out on the dumpsite with the aim of delineating the leachate contaminant plumes using resistivity method. Nine electrical resistivity profiles were measured on the site. Six transverse profiles were conducted on the dumpsite with thirty-six vertical electrical sounding (VES) point, three transverse profiles was also conducted on the control site which is 100 meters away from the dumpsite having nine vertical electrical sounding (VES) point and a dimension of 40m x 40m. The resistivity data obtained was analyzed using winresist software. The data obtained from the study area revealed three underlain layer they are the topsoil, fractured basement and fresh basement. The dumpsite was typified by A-types and H-types of curve and the control site was typified by H-type of curves. Iso–resistivity maps at various depths were observed, at the surface, 3m, 5m,7m, and 10m for the dumpsite and the control site. It can therefore be inferred from this study that the depth of contamination is 7 meter and aquifer found within this depth are most likely to be contaminated by leachate and water bearing formation beyond the depth of 7m is safe from contamination. The rate of contamination of the study area is approximately 1.0 meter per year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.