The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires an extensive complex of geological, biological, geophysical, and chemical studies. This article is devoted to aspects of the use of a complex of marine geophysical equipment applied in the Russian sector of the arctic shelf for the detection and study of areas of the water and sedimentary strata with increased saturation with natural gases, as well as a description of some of the results obtained. This complex contains a single-beam scientific high-frequency echo sounder and multibeam system, a sub-bottom profiler, ocean-bottom seismographs, and equipment for continuous seismoacoustic profiling and electrical exploration. The experience of using the above equipment and the examples of the results obtained in the Laptev Sea have shown that these marine geophysical methods are effective and of particular importance for solving most problems related to the detection, mapping, quantification, and monitoring of underwater gas release from the bottom sediments of the shelf zone of the arctic seas, as well as the study of upper and deeper geological roots of gas emission and their relationship with tectonic processes. Geophysical surveys have a significant performance advantage compared to any contact methods. The large-scale application of a wide range of marine geophysical methods is essential for a comprehensive study of the geohazards of vast shelf zones, which have significant potential for economic use.
<p>Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our 12 years observations, we show that CH4 emissions from this shelf to be determined by the state of subsea permafrost degradation. Below we consider dramatically growing release from the area located out of known fault zones.</p><p>First time, we observed CH4 emissions from this single flare in 2007 in the ESAS mid-shelf.&#160; During 2014-2018 we revisited this area several times aiming to investigate quantitatively changing CH4 ebullition. The data show transformation of a single CH4 flare in a significant seepage area. CH4 emissions from this area emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing is much faster not only downward, but also laterally which could result in a significant increase in CH4 emissions from the ESAS.</p><p>This work was supported in part by grants from Russian Scientific Foundation (&#8470;15-17-20032, &#8470; 18-77-10004, &#8470;19-77-00067), grant from Russian Government (Grant No. 14, Z50.31.0012/03.19.2014) and Tomsk Polytechnic University Competitiveness Enhancement Program grant, Project Number TPU CEP_SESE-299\2019.</p>
The Pechora Sea is optimally located for studying the coalescence of a glacial and periglacial continental shelf zone in the high Arctic. Here, we present data acquired during cruises of the RV Akademik Nikolaj Strakhov in 2018–2021, revealing the distribution of submarine glacial landforms in the central part of the Pechora shelf area. Based on moraines and the distribution of glacial lineations, the extent of the ice sheet during the Last Glacial Maximum (LGM) is proposed. The crests of the moraine ridges and the slopes of their sides express a variation in morphology, and the ridges combine into irregular complexes. The moraines are primarily composed of coarse cobble-sized material with an addition of coarse sand and other sedimentary fractions. The mapped glacial landforms clearly indicate that an ice sheet extended over the area, while the Pechora basin, at the same time, was comprised of lowland characterized by a cryogenic subaerial landscape. Based on the result from this study, the extent and ice-flow pattern of the Barents-Kara Ice Sheet during the LGM were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.