This work studies the jet formation process and the flow developing from the waterjet cutting head. In experiments, the high speed imaging of the supersonic jet (camera Photron FASTCAM SA5 with a frame rate of 100.000 fps) is complemented with the thermographic measurements conducted using an infrared camera FLIR Systems SC7700 with a frame rate of up to 400 fps. This study aims to provide new knowledge about two-phase flows under extreme conditions, and is of particular importance for waterjet design optimization.
Shadowgraph imaging has been widely used to study flow fields in experimental fluid dynamics. Nowadays high-speed cameras allow to obtain millions of frames per second. Thus, it is not possible to analyze and process such large data sets manually and automatic image processing software is required. In the present study a software for automatic flow structures detection and tracking was developed based on the convolutional neural network (the network architecture is based on the YOLOv2 algorithm). Auto ML techniques were used to automatically tune model and hyperparameters and speed-up model development and training process. The neural network was trained to detect shock waves, thermal plumes, and solid particles in the flow with high precision. We successfully tested out software on high-speed shadowgraph recordings of gas flow in shock tube with shock wave Mach number M = 2-4.5. Also, we performed CFD to simulate the same flow. In recent decades, the amount of data in numerical simulations has grown significantly due to the growth in performance of computers. Thus, machine learning is also required to process large arrays of CFD results. We developed another ML tool for experimental and simulated by CFD shadowgraph images matching. Our algorithm is based on the VGG16 deep neural network for feature vector extraction and knearest neighbors algorithm for finding the most similar images based on the cosine similarity. We successfully applied our algorithm to automatically find the corresponding experimental shadowgraph image for each CFD image of the flow in shock tube with a rectangular obstacle in the flow channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.