Passive sonar is widely used in practice to covertly detect maritime vessels. However, the detection of stealthy vessels often requires active sonar. The risk of the overt nature of active sonar operation can be reduced by using multistatic sonar techniques. Cheap sonar sensors that do not require any beamforming technique can be exploited in a multistatic system for spacial diversity. In this paper, Gaussian mixture probability hypothesis density (GMPHD) filter, which is a computationally cheap multitarget tracking algorithm, is used to track multiple targets using the multistatic sonar system that provides only bistatic range and Doppler measurements. The filtering results are further improved by extending the recently developed PHD smoothing algorithm for GMPHD. This new backward smoothing algorithm provides delayed, but better, estimates for the target state. Simulations are performed with the proposed method on a 2-D scenario. Simulation results present the benefits of the proposed algorithm.
Detection and estimation of multiple unresolved targets with a monopulse radar is a challenging problem. For ideal single bin processing, it was shown in the literature that at most two unresolved targets can be extracted from the complex matched filter output signal. In this thesis, a new algorithm is developed to jointly detect and track more than two targets from a single detection. This method involves the use of tracking data in the detection process.For this purpose, target states are transformed into the detection parameter space, which involves high nonlinearity. In order to handle this, the sequential Monte Carlo (SMC) method, which has proven to be effective in nonlinear non-Gaussian estimation problems, is used as the basis of the closed loop system for tracking multiple unresolved targets. In addition to the standard SMC steps, the detection parameters corresponding to the predicted particles are evaluated using the nonlinear monopulse radar beam model. This in turn enables the evaluation of the likelihood of the monopulse signal given tracking data. Hypothesis testing is then used to find the correct detection event. The particles are updated and resampled according to the hypothesis that has the highest likelihood (score). A simulated amplitude comparison monopulse radar is used to generate the data and to validate the extraction and tracking of more than two unresolved targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.