The enriched nutritional and functional properties of inulinase with wide attention are considered commercial/industrial food enzymes. It can be produced by many microorganisms such as yeasts, fungi, and bacteria. Nocardiopsis is a genus under Actinomycetes, which has biotechnologically important microorganisms. This study aims to isolate and identify marine Actinomycetes Nocardiopsis species and to evaluate the antibacterial potential of the inulinase enzyme obtained from it. Marine actinobacteria (Nocardiopsis sp.) were isolated from sediment samples on YM agar. The isolate was identified by biochemical analysis of cell walls (amino acid and sugar). Enzyme screening assay was performed with temperature and pH influence in the production inulinase enzyme production. Antibacterial activity and minimal inhibitory activity of inulinase enzyme were performed with Staphylococcus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrobial testing revealed that with higher concentrations of inulinase enzyme, the zone of inhibition of bacterial growth increased, and the minimum inhibitory concentration of inulinase enzyme that prevented the growth of bacteria was close to the standard tetracycline. Inulinase enzyme obtained from Nocardiopsis species shows good antibacterial activity against Staphylococcus aureus, K. pneumoniae, and P. aeruginosa in comparison to the standard, tetracycline.
The coronavirus causing COVID-19 is officially named as SARS-CoV-2. The coronavirus disease 2019 (COVID-19), which originated in Wuhan, China, has become a major public health concern all over the World. Infection control measures are necessary to stop the virus from spreading further and help to manage the pandemic situation. Many countries have implemented lockdown measures and social distancing to slow down or prevent the spread of COVID-19 pandemic. This implementation is believed to possess a significantly decreased rate of growth and increased doubling time of cases. Due to the spread through respiratory droplets, the incidence of infection will be high between patients and dental practitioners. The dental clinics and hospitals within the containment areas of COVID-19 should follow infection control protocols precisely in order to confer safety to both the patients and the practitioners. This article thus provides important and requisite knowledge about COVID-19 and therefore, the restrictions and strict protocols to be followed for or while undertaking dental treatment during the crucial lockdown period of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.