Universiti Teknologi MARA Perlis Branch (UiTM Perlis) faced a huge challenge in teaching and learning for the subject Fundamentals of Entrepreneurship (ENT300/ETR300). This subject is classified as a university's code; therefore every diploma student in UiTM must enroll for the subject. The enrollment for ENT300/ETR300 increased from 570 students (semester 2012) to a maximum of 1,384 students (semester 2013). Thus, it leads to various weaknesses such as insufficient instructors, complexities in conducting student assessments, as well as limited facilities available in the university. Because of this, i-CREATE was designed to address these issues. Using this strategy, the process of teaching and learning for ENT300/ETR300 has been innovated. This method provides benefits to various parties including students, instructors, faculty members, and university.
This paper focuses on the synthesis and comparison of hydrogel- and xerogel-based sorbents from EFB.Hydrogels were synthesised by polymerisation of EFB biochar with acrylamide (AAm) as a monomer, N, N'-Methylenebisacrylamide (MBA) as cross-linker and ammonium persulfate (APS) as initiator, as well as by internal gelation method of sodium alginate, empty fruit bunch (EFB), calcium carbonate (CaCO3), and glucono delta-lactone (GDL). From the alginate hydrogels obtained, xerogels were synthesised via the oven-drying method. Then, EFB-based hydrogel and xerogel sorbents were analysed and compared based on characterisation analysis by using scanning electron microscopy (SEM), BrunauerEmmettTeller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), and thermogravimetric analysis (TGA).The xerogel-based EFB is a better adsorbent than the hydrogel-based EFB because it has a larger pore volume (0.001449 cm3/g), larger pore size (63.7987 nm), higher moisture content (7.97%), lower ash content (12.55%), and is more thermally stable.The research is to compare two new adsorbents, namely Hydrogel and Xerogel, from EFB in terms of their characteristics.Both adsorbents show a highly toxic material uptake, especially EFB xerogel. This adsorbent is comparable with the other commercialised adsorbent. Thus, this product can be a highly potential adsorbent for gas and wastewater adsorption.The authenticity results of this article were found to be 15% similar. The novelty of this paper is to compare the two adsorbents, namely hydrogel and xerogel, that originated from EFB.
This research aims to investigate the detailed state of adsorption kinetics modelling and research on the application of hydrogen sulfide adsorption by hydrogel derived from empty fruit bunch (EFB), the determination of the kinetics parameters, and the comparison between models in a selection of the best-fit model.The kinetics modelling used are pseudo-first-order and pseudo-second-order models. The correlation coefficient was used to evaluate the suitability of the equation R2. After obtaining the results, the comparison was made by comparing the R2 of each model. The pseudo-second-order model has a higher value of correlation coefficient, R2, making it the most suitable kinetics model for adsorption systems.The R2 for pseudo-first-order on the effect of dry bed height was 0.8814, whereas its effect on powder bed height was 0.9537, and that of the wet bed height was 0.9607. Meanwhile, the R2 for pseudo-second-order on the effect of dry bed height was 0.89, on the effect of the powder bed height was 0.99, and on the effect of the bed height of wet was 0.99, the highest among kinetic models. Based on the results, the pseudo-second-order model best describes the adsorption of hydrogen sulfide (H2S) by hydrogel biochar.The kinetics modelling used are pseudo-first-order, and pseudo-second-order models for hydrogen sulfide adsorption by hydrogel originating from empty fruit bunches (EFB).Based on the results, the pseudo-second-order model best describes the adsorption of hydrogen sulfide (H2S) by hydrogel biochar. Kinetic studies are important in understanding the reactions and design of the process.The authenticity results of this article were found to be 17% similar. The novelty of this paper is the kinetics study of the new adsorbent developed based on EFB to adsorb H2S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.