Antibacterial glaze coating on ceramic tiles with TiO2 additive was conducted to meet environmental sanitation needs. Raw materials used were commercial glaze 107, silica sand, and 0-5% weight of TiO2 powder. The glaze mixture was added with distilled water and ground in an alumina pot mill for 24 hours. The glaze mass was coated on the green body, dried and then burned at a temperature of 1200°C with a holding time of 2 hours. On the glazed tiles, there was a layer of glass with an amorphous structure based on the X-Ray Diffraction results. The addition of TiO2 caused an increase in opacity but decreased visual white color. Glaze antibacterial properties were tested for Escherichia coli and Staphylococcus aureus bacteria using the disc diffusion method. The addition of TiO2 caused resistance to two types of bacteria, both for raw and burned glaze. The TiO2 inhibition was similar to amoxicillin as a positive control. It had a greater resistance to S. aureus than E. coli bacteria. The largest inhibitory diameter value of 7.7 mm obtained by 5% TiO2 glaze powder burnt against S. aureus bacteria. Glaze coating on the tile caused a greater inhibition diameter of 24.75 mm for 1% TiO2 burned glazed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.