S U M M A R YThe calculation of strength profiles along the European Geotraverse (EGT) through the Swiss Alps yields constraints on the large-scale vertical and lateral mechanical structure through the Alpine continent-continent collision zone. Strength profiles are evaluated for different assumptions on petrological stratification and strain rate and are based on temperature-depth profiles derived from transient thermo-kinematic modelling of the Neoalpine orogeny. The main contribution to the total strength results from the mantle lithosphere, which is strongly controlled by temperature. In contrast, the crustal contribution is mainly determined by variations in petrological stratification. A direct correlation between surface heat flow and the total strength of the crust, the mantle lithosphere and the entire lithosphere (crust and mantle lithosphere) is not observed. Our results demonstrate that in tectonically active areas a transient thermal model, along with detailed knowledge of the deep structure and petrology, is necessary to evaluate lithospheric strength envelopes. Inside the collision zone, strain rate has a strong control on the bottom of the mechanically strong crust, whereas outside the collision zone the effect is less significant. The cut-off depth of seismicity along the profile, which correlates largely with the bottom of the mechanically strong crust, deviates from the 30WOO "C isotherm. The inferred effective elastic thickness for the Molasse Basin north of the Alps is in agreement with flexural modelling results, whereas for the Southern Alps the predictions deviate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.