The structural state of annular work pieces made of brass CuZn34Mn3Al2FeNi after hot forming at temperatures of 700 and 780 C is studied. Electron microprobe analysis of the material of rings shows the absence of any harmful impurities, low melting eutectics, silicides and nonmetallic inclusions on the ʹ-grain interfaces. Irregularity of the dynamic recrystallization process in the cross section of the rings has been revealed; namely, there are two zones differing in the amount of deformation. One area with minimal deformation and excessively large grain, the second -with the maximum deformation and small grain resulting from dynamic recrystallization. Determined that heating for stamping to 780 Cresults togrowth of βʹ-grains up to 0.3 mmin the area with minimal deformation, the grains boundaries are reinforced (on the borders -300 HV 0.2, and in the center of the grain -170 HV 0.2), which facilitates the emergence and rapid growth of cracks under the action of internal residual stresses formed during cooling of blanks. Lowering the temperature of heating for forging to 700 C reduces the size of the maximum βʹ-grains up to 0.15 mm, thus not detected hardening of their borders that helps to preserve the integrity of the rings after cooling.
The microstructure and mechanical properties of magnesium alloy samples cut out from a shell structure after 20 years' operation in climatic conditions are studied, as well as the effect of subsequent annealing at temperatures of 50 and 70 °C during up to 3000 h on the change in the mechanical properties and the values of electrical resistivity. The magnesium alloy is shown to consist of an α-solid solution of alloying elements in magnesium, a β-solid solution of alloying elements in lithium, and intermetallic compounds of aluminum, zinc, magnesium, manganese and lithium. At the studied temperatures, the aging processes in the alloy proceed extremely inertly, with an insignificant decrease in hardness and unchanged values of electrical resistivity. Changes in mechanical properties are recorded only within the first 1000 hours of annealing at 70 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.