In order to improve classification accuracy and lower future computation and data collecting costs, feature selection is the process of choosing the most crucial features from a group of attributes and removing the less crucial or redundant ones. To narrow down the features that need to be analyzed, a variety of feature selection procedures have been detailed in published publications. Chi-Square (CS), IG, Relief, GR, Symmetrical Uncertainty (SU), and MI are six alternative feature selection methods used in this study. The provided dataset is aggregated using four rank aggregation strategies: "rank aggregation," "Borda Count (BC) methodology," "score and rank combination," and "unified feature scoring" based on the outcomes of the six feature selection method (UFS). These four procedures by themselves were unable to generate a clear selection rank for the characteristic. To produce different ranks of traits, this ensemble of aggregating ranks is carried out. For this, the bagging method of majority voting was applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.