A problem of electromagnetic waves radiation by an impedance vibrator located over finitedimensional perfectly conducting screen is solved. The vibrator may have surface impedance distributed over its length. The solution is derived using asymptotic expressions for the current in a horizontal impedance vibrator placed over an infinite plane, obtained by averaging method. The problem was solved provided that the diffracted fields from the edges of the screen have little effect on the vibrator current amplitude, i.e., if the screen dimensions are comparable to or larger than the wavelength. Full radiation fields in all observation space in the far zone were found by the uniform geometrical theory of diffraction. The vibrator dimensions, value and type of surface impedance, removing from the screen and screen sizes were used as parameters. The multivariable electrodynamic characteristics of the resonant impedance vibrators placed above an infinite plane and square screen were studied. Characteristics dependences upon the vibrator dimensions, value and type of the surface impedance, removing from the screen, and screen dimensions were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.