[1] Mean sea level trends from TOPEX and Jason-1 altimeter data are recomputed using unified geophysical modeling and the new ITRF2005 terrestrial reference frame for the entire altimetric time series, with consistent orbits based on satellite laser ranging (SLR) and DORIS tracking data. We obtain a global rate of 3.36 ± 0.41 mm/yr over the 14 year period from 1993 to 2007. The regional sea level trends computed with the new reference frame show significant north/south hemispherical offsets of ±1.5 mm/yr relative to trends based on the previous 1995-era frame.
The TOPEX/POSEIDON mission objective requires that the radial position of the spacecraft be determined with an accuracy better than 13 cm RMS (root mean square). This stringent requirement is an order of magnitude below the accuracy achieved for any altimeter mission prior to the definition of the TOPEX/POSEIDON mission. To satisfy this objective, the TOPEX Precision Orbit Determination (POD) Team was established as a joint effort between the NASA Goddard Space Flight Center and the University of Texas at Austin, with collaboration from the University of Colorado and the Jet Propulsion Laboratory. During the prelaunch development and the postlaunch verification phases, the POD team improved, calibrated, and validated the precision orbit determination computer software systems. The accomplishments include (1) increased accuracy of the gravity and surface force models and (2) improved performance of both the laser ranging and Doppler tracking systems. The result of these efforts led to orbit accuracies for TOPEX/POSEIDON which are significantly better than the original mission requirement. Tests based on data fits, covariance analysis, and orbit comparisons indicate that the radial component of the TOPEX/POSEIDON spacecraft is determined, relative to the Earth's mass center, with an RMS error in the range of 3 to 4 cm RMS. This orbit accuracy, together with the near continuous dual‐frequency altimetry from this mission, provides the means to determine the ocean's dynamic topography with an unprecedented accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.