Abstract-Thick, fully depleted p-channel charge-coupled devices (CCDs) have been developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have several advantages over conventional thin, n-channel CCDs, including enhanced quantum efficiency and reduced fringing at nearinfrared wavelengths and improved radiation tolerance. Here we report results from the irradiation of CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron and with 0.1 -1 MeV electrons at the LBNL 60 Co source. These studies indicate that the LBNL CCDs perform well after irradiation, even in the parameters in which significant degradation is observed in other CCDs: charge transfer efficiency, dark current, and isolated hot pixels. Modeling the radiation exposure over a sixyear mission lifetime with no annealing, we expect an increase in dark current of 20 e − /pixel/hr, and a degradation of charge transfer efficiency in the parallel direction of 3 × 10 −6 and 1 × 10 −6 in the serial direction. The dark current is observed to improve with an annealing cycle, while the parallel CTE is relatively unaffected and the serial CTE is somewhat degraded. As expected, the radiation tolerance of the p-channel LBNL CCDs is significantly improved over the conventional n-channel CCDs that are currently employed in space-based telescopes such as the Hubble Space Telescope.
We have developed an optical approach for modeling the quantum efficiency (QE) of back-illuminated CCD optical imagers for astronomy. Beyond its simplicity, it has the advantage of providing a complete fringing description for a real (wide-aperture) system. Standard thin-film calculations are extended by (a) considering the CCD itself as a thin film, and (b) treating the refractive index as complex. The QE is approximated as the fraction of the light neither transmitted nor reflected, which basically says that all absorbed photons produce e-h pairs and each photoproduced e or h is collected (recombination is negligible). Near-surface effects relevant to blue response must still be treated by standard semiconductor modeling methods. A simple analytic expression describes the QE of a CCD without antireflective (AR) coatings. With AR coatings the system is more easily described by transfer matrix methods. A two-layer AR coating is tuned to give a reasonable description of standard thinned CCD's, while the measured QE of prototype LBNL totally-depleted thick CCD's is well described with no adjustable parameters. Application to the new LBNL CCD's indicates that these devices will have QE > 70% at A = 1000 nm and negligible fringing in optical systems faster than f 4.0.
The SuperNova / Acceleration Probe (SNAP) is a space-based experiment to measure the expansion history of the Universe and study both its dark energy and the dark matter. The experiment is motivated by the startling discovery that the expansion of the Universe is accelerating. A 0.7 square-degree imager comprised of 36 large format fully-depleted n-type CCD's sharing a focal plane with 36 HgCdTe detectors forms the heart of SNAP, allowing discovery and lightcurve measurements simultaneously for many supernovae. The imager and a high-efficiency low-resolution integral field spectrograph are coupled to a 2-m three mirror anastigmat wide-field telescope, which will be placed in a high-earth orbit. The SNAP mission can obtain high-signal-to-noise calibrated light-curves and spectra for over 2000 Type Ia supernovae at redshifts between z=0.1 and 1.7. The resulting data set can not only determine the amount of dark energy with high precision, but test the nature of the dark energy by examining its equation of state. In particular, dark energy due to a cosmological constant can be differentiated from alternatives such as "quintessence", by measuring the dark energy's equation of state to an accuracy of +/-0.05, and by studying its time dependence.Comment: This paper will be published in SPIE Proceedings Vol 4835 and is made available as an electronic preprint with permission of SPI
We describe research and development efforts directed towards the production of 4 k × 4 k, 15 µm-pixel, fully depleted CCDs for the Dark Energy Spectroscopic Instrument (DESI). The requirements for DESI include the spectroscopic characterization of large numbers of faint galaxies at high redshift. The identification of the type and the determination of the redshift of the targeted galaxies require the use of thick, fully depleted CCDs with high quantum efficiency at near-infrared wavelengths. We describe our work to improve the CCD performance in terms of quantum efficiency and read noise. We also discuss efforts to reduce the level of image-distortion effects that have been observed on previous CCDs that are due to resistivity striations in the starting silicon and periodic errors in the photomasks used to produce the CCDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.