We have obtained spectroscopic redshifts using the Keck-I telescope for a sample of 73 submillimeter (submm) galaxies for which precise positions are available. The galaxies lie at redshifts out to z=3.6, with a median redshift of 2.2. The dust-corrected ultraviolet (UV) luminosities of the galaxies rarely hint at their huge bolometric luminosities indicated by their radio/submm emission, underestimating the true luminosity by a median factor of ~100 for SMGs with pure starburst spectra. The 850mu, radio, and redshift data is used to estimate the dust temperatures (
We present ~0.6" resolution IRAM PdBI interferometry of eight submillimeter galaxies at z~2 to 3.4, where we detect continuum at 1mm and/or CO lines at 3 and 1 mm. The CO 3-2/4-3 line profiles in five of the sources are double-peaked, indicative of orbital motion either in a single rotating disk or of a merger of two galaxies. The millimeter line and continuum emission is compact; we marginally resolve the sources or obtain tight upper limits to their intrinsic sizes in all cases. The median FWHM diameter for these sources and the previously resolved sources, SMMJ023952-0136 and SMMJ140104+0252 is ≤0.5" (4 kpc). The compactness of the sources does not support a scenario where the far-IR/submm emission comes from 1 Based on observations obtained at the IRAM Plateau de Bure Interferometer (PdBI). IRAM is funded by the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), and the Instituto Geografico Nacional (Spain). a cold (T<30 K), very extended dust distribution. These measurements clearly show that the submillimeter galaxies we have observed resemble scaled-up and more gas rich versions of the local Universe, ultra-luminous galaxy (ULIRG) population. Their central densities and potential well depths are much greater than in other z~2-3 galaxy samples studied so far. They are comparable to those of elliptical galaxies or massive bulges. The SMG properties fulfill the criteria of 'maximal' starbursts, in which most of the available initial gas reservoir of 10 10 -10 11 M is converted to stars on a time scale ~3-10 t dyn~a few 10 7 years.
In this paper, we present results from an Institut de Radio Astronomie Millimétrique (IRAM) Plateau de Bure millimetre‐wave Interferometer (PdBI) survey for carbon monoxide (CO) emission towards radio‐detected submillimetre galaxies (SMGs) with known optical and near‐infrared spectroscopic redshifts. Five sources in the redshift range z∼ 1–3.5 were detected, nearly doubling the number of SMGs detected in CO. We summarize the properties of all 12 CO‐detected SMGs, as well as six sources not detected in CO by our survey, and use this sample to explore the bulk physical properties of the submillimetre galaxy (SMG) population as a whole. The median CO line luminosity of the SMGs is 〈L′CO〉= (3.8 ± 2.0) × 1010 K km s‐1 pc2. Using a CO‐to‐H2 conversion factor appropriate for starburst galaxies, this corresponds to a molecular gas mass 〈M(H2)〉= (3.0 ± 1.6) × 1010 M⊙ within an ∼ 2 kpc radius, approximately 4 times greater than the most luminous local ultraluminous infrared galaxies (ULIRGs) but comparable to that of the most extreme high‐redshift radio galaxies (HzRGs) and quasi‐sellar objects (QSOs). The median CO FWHM linewidth is broad, 〈FWHM〉= 780 ± 320 km s−1, and the SMGs often have double‐peaked line profiles, indicative of either a merger or a disc. From their median gas reservoirs (∼ 3 × 1010 M⊙) and star formation rates (≳ 700 M⊙ yr−1), we estimate a lower limit on the typical gas‐depletion time‐scale of ≳ 40 Myr in SMGs. This is marginally below the typical age expected for the starbursts in SMGs and suggests that negative feedback processes may play an important role in prolonging the gas consumption time‐scale. We find a statistically significant correlation between the far‐infrared and CO luminosities of the SMGs, which extends the observed correlation for local ULIRGs to higher luminosities and higher redshifts. The non‐linear nature of the correlation implies that SMGs have higher far‐infrared to CO luminosity ratios and possibly higher star formation efficiencies (SFEs), than local ULIRGs. Assuming a typical CO source diameter of θ∼ 0.5 arcsec (D∼ 4 kpc), we estimate a median dynamical mass of 〈Mdyn〉≃ (1.2 ± 1.5) × 1011 M⊙ for the SMG sample. Both the total gas and stellar masses imply that SMGs are very massive systems, dominated by baryons in their central regions. The baryonic and dynamical properties of these systems mirror those of local giant ellipticals and are consistent with numerical simulations of the formation of the most massive galaxies. We have been able to impose a lower limit of ≳ 5 × 10−6 Mpc−3 to the comoving number density of massive galaxies in the redshift range z∼ 2–3.5, which is in agreement with results from recent spectroscopic surveys and the most recent model predictions.
We present the results from a survey for 12 CO emission in 40 luminous sub-millimetre galaxies (SMGs), with 850-µm fluxes of S 850µm = 4 − 20 mJy, conducted with the Plateau de Bure Interferometer. We detect 12 CO emission in 32 SMGs at z ∼ 1.2 -4.1, including 16 SMGs not previously published. Using multiple 12 CO line (J up = 2-7) observations, we derive a median spectral line energy distribution for luminous SMGs and use this to estimate a mean gas mass of (5.3 ± 1.0) × 10 10 M . We report the discovery of a fundamental relationship between 12 CO FWHM and 12 CO line luminosity in high-redshift starbursts, which we interpret as a natural consequence of the baryon-dominated dynamics within the regions probed by our observations. We use far-infrared luminosities to assess the star-formation efficiency in our SMGs, finding a steepening of the L CO -L FIR relation as a function of increasing 12 CO J up transition. We derive dynamical masses and molecular gas masses, and use these to determine the redshift evolution of the gas content of SMGs, finding that they do not appear to be significantly more gas rich than less vigorously star-forming galaxies at high redshifts. Finally, we collate X-ray observations, and study the interdependence of gas and dynamical properties of SMGs with their AGN activity and supermassive black hole masses (M BH ), finding that SMGs lie significantly below the local M BH -σ relation. We conclude that SMGs represent a class of massive, gas-rich ultraluminous galaxies with somewhat heterogeneous properties, ranging from starbursting disc-like systems with L∼ 10 12 L , to the most highly star-forming mergers in the Universe.
We present an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS). Our 870 μm survey with ALMA (ALESS) has produced maps ∼3× deeper and with a beam area ∼200× smaller than the original LESS observations, doubling the current number of interferometrically-observed submillimeter sources. The high resolution of these maps allows us to resolve sources that were previously blended and accurately identify the origin of the submillimeter emission. We discuss the creation of the ALESS submillimeter galaxy (SMG) catalog, including the main sample of 99 SMGs and a supplementary sample of 32 SMGs. We find that at least 35% (possibly up to 50%) of the detected LABOCA sources have been resolved into multiple SMGs, and that the average number of SMGs per LESS source increases with LESS flux density. Using the (now precisely known) SMG positions, we empirically test the theoretical expectation for the uncertainty in the single-dish source positions. We also compare our catalog to the previously predicted radio/mid-infrared counterparts, finding that 45% of the ALESS SMGs were missed by this method. Our ∼1. 6 resolution allows us to measure a size of ∼9 kpc × 5 kpc for the rest-frame ∼300 μm emission region in one resolved SMG, implying a star formation rate surface density of 80 M yr −1 kpc −2 , and we constrain the emission regions in the remaining SMGs to be <10 kpc. As the first statistically reliable survey of SMGs, this will provide the basis for an unbiased multiwavelength study of SMG properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.