We present the results from a survey for 12 CO emission in 40 luminous sub-millimetre galaxies (SMGs), with 850-µm fluxes of S 850µm = 4 − 20 mJy, conducted with the Plateau de Bure Interferometer. We detect 12 CO emission in 32 SMGs at z ∼ 1.2 -4.1, including 16 SMGs not previously published. Using multiple 12 CO line (J up = 2-7) observations, we derive a median spectral line energy distribution for luminous SMGs and use this to estimate a mean gas mass of (5.3 ± 1.0) × 10 10 M . We report the discovery of a fundamental relationship between 12 CO FWHM and 12 CO line luminosity in high-redshift starbursts, which we interpret as a natural consequence of the baryon-dominated dynamics within the regions probed by our observations. We use far-infrared luminosities to assess the star-formation efficiency in our SMGs, finding a steepening of the L CO -L FIR relation as a function of increasing 12 CO J up transition. We derive dynamical masses and molecular gas masses, and use these to determine the redshift evolution of the gas content of SMGs, finding that they do not appear to be significantly more gas rich than less vigorously star-forming galaxies at high redshifts. Finally, we collate X-ray observations, and study the interdependence of gas and dynamical properties of SMGs with their AGN activity and supermassive black hole masses (M BH ), finding that SMGs lie significantly below the local M BH -σ relation. We conclude that SMGs represent a class of massive, gas-rich ultraluminous galaxies with somewhat heterogeneous properties, ranging from starbursting disc-like systems with L∼ 10 12 L , to the most highly star-forming mergers in the Universe.
The South Pole Telescope has discovered one hundred gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.5 resolution 870 µm Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z = 1.9 − 5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies (µ 870µm > 2), with a median magnification µ 870µm = 6.3, extending to µ 870µm > 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of 2 compared to estimates using a single value for this wavelength. We investigate the relationship between the [CII] line and the far-infrared luminosity and find that the same correlation between the [CII]/L FIR ratio and Σ FIR found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in Σ FIR . This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the "[CII] deficit."
We present [CII] observations of 20 strongly lensed dusty star forming galaxies at 2.1 < z < 5.7 using APEX and Herschel. The sources were selected on their 1.4 mm flux (S 1.4 mm > 20 mJy) from the South Pole Telescope survey, with far-infrared (FIR) luminosities determined from extensive photometric data. The [CII] line is robustly detected in 17 sources, all but one being spectrally resolved. Eleven out of 20 sources observed in [CII] also have low-J CO detections from ATCA. A comparison with midand high-J CO lines from ALMA reveals consistent [CII] and CO velocity profiles, suggesting that there is little differential lensing between these species. The [CII], low-J CO and FIR data allow us to constrain the properties of the interstellar medium. We find [CII] to CO(1-0) luminosity ratios in the SPT sample of 5200 ± 1800, with significantly less scatter than in other samples. This line ratio can be best described by a medium of [CII] and CO emitting gas with a higher [CII] than CO excitation temperature, high CO optical depth τ CO (1-0) 1, and low to moderate [CII] optical depth τ [CII] 1. The geometric structure of photodissociation regions allows for such conditions.
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.