The active Corinth rift records hanging-wall migration of faulting and slip-rate acceleration. The rift initiated at approximately 5–4 Ma, and older parts are well exposed in the northern Peloponnese. A new correlation of chrono- and lithostratigraphy and structure across the onland central to westernmost rift with offshore data reveals westward rift propagation, as well as northward fault migration. Northward fault migration ended first in the east, with the stabilization of major north-dipping faults that now bound the Gulf. The basin then propagated to the WNW in two stages, each involving the initiation of a new fault that propagated east to SE to link to the stable fault system. Extension rates accelerated in distinct steps as the rift opened to the west. The youngest faults in the westernmost rift are associated with high seismicity and highest geodetic extension due to rapid fault growth and linkage at depth.The early synrift succession infilled substantial inherited palaeo-relief. Antecedent rivers established vigorous sediment-routing systems that controlled facies distribution throughout rifting, albeit with drainage reorganization during fault-migration events. Multiple deepening events recorded in the stratigraphy can be due to lateral rift propagation. The transition from rift initiation to rift climax is, therefore, diachronous along the rift axis.
Along the southern coast of the Gulf of Corinth, important coastal uplift is illustrated by raised Late-Pleistocene marine platforms. Terrace remnants preserved on the footwall of the Aigion and Eliki Faults were mapped in detail. To derive cumulative uplift rates, the individual terraces were tentatively correlated with the eustatic sea-level curve, constrained by some direct dating of the deposits blanketing the terraces. We obtain uplift rates of 1.05-1.2 mm yr −1 for the Aigion Fault footwall and of 1.0 and 1.25 mm yr −1 for the East and West Eliki Fault footwalls respectively. A forward modelling procedure was adopted to fit the best-preserved terrace transects, using a code based on standard dislocation theory and assuming reasonable scenarios of regional uplift. We obtained maximum slip rates consistently in the range of 7-11 mm yr −1 for the West and East Eliki Faults and of 9-11 mm yr −1 for the Aigion Fault.
We performed palaeoseismological investigations along the Aigion Fault, one of the main faults that bound the southern side of the Corinth Gulf. The mapped trace of the Aigion Fault onland is about 8 km long and may extend as much as 14 km if one includes its offshore trace. We made detailed studies at two sites adjacent to the Meganitas River. Although dating of faulted sediments was a bit problematic, we present a preliminary estimate of the faults short-term slip rate and recurrence interval. Slip rates range from 1.6 to 4.3 mm yr −1 , with a maximum up to 6.3 mm yr −1 . Three surface faulting events occurred in the seven centuries prior to 1888 AD, yielding an average (maximum) recurrence interval of 360 yr. To cite this article: D.
[1] At the westernmost part of the Corinth Rift (Greece), an area of rapid extension and active normal faulting, geomorphological observations reveal the existence and geometry of an active NW-SE trending coastal fault system, which includes the Aigion fault. We recognize a similar fault pattern on both the coastal range front to the NW of Aigion town and the Holocene fan deltas in front of it. We interpret this as a result of recent migration of faulting to the hanging wall of the fault system. Differences in the geomorphic expression of the constituent faults provide hints on the possible evolution of the fault pattern during this recent migration. A trench excavated across one of the identified coastal fault scarps (on a Holocene fan delta) provides information on the seismic history of the fault system, which includes at least four (possibly six) earthquakes in the past 4000 years. A minimum estimate for the slip rate of the trenched fault is 1.9-2.7 mm/yr. The trench exposed sediments of an uplifted paleolagoon (approximate age 2000 years B.P.), inside which the last two earthquakes formed an underwater monoclinal scarp. Oscillating coastal vertical movements are suggested by the fact that the lagoonal deposits are also uplifted on the trenched fault hanging wall (uplift by offshore faults) and by the abrupt transition from fluvial to lagoonal deposits (subsidence by more landward faults, assuming that extensive coastal sediment failure has not taken place in the specific part of the fan delta, within the time interval of interest). These movements suggest that the proposed migration of activity from the range front faults to those on the fan deltas is probably still ongoing, with activity on both sets of faults.
The 12 November 1999 Mw 7.1 earthquake ruptured the Düzce segment of the North Anatolian Fault Zone and produced a ∼40‐km‐long surface rupture. To improve knowledge about earthquake recurrence on this fault, we undertook paleoseismological trench investigations. We found evidence for repeated surface faulting paleoearthquakes predating the 1999 event during the past millennium. Dating was based on radiocarbon, 210Pb analyses, and archaeological considerations. In addition to the 1999 earthquake, prior surface faulting earthquakes are dated as follows: A.D. 1685–1900 (possibly end of 19th century), A.D. 1495–1700, and A.D. 685–1020 (possibly A.D. 890–1020). The A.D. 967 and A.D. 1878 historical earthquakes are good candidates to have ruptured the Düzce fault correlating with the oldest and penultimate paleoearthquakes. No obvious correlation for the third paleoearthquake (A.D. 1495–1700) exists. These results shows that the Düzce fault considerably participates, along with the parallel Mudurnu fault sections, in the seismogenic deformation taking place along this part of the North Anatolian Fault. Four events since A.D. 685–1020 (possibly A.D. 890–1020) would yield an average recurrence time for the Düzce fault of 330–430 years (possibly 330–370 years). The three most recent earthquakes, including 1999, occurred within 500 years. Merging results from other paleoseismological studies along the Düzce fault show a consistency of results and yields average recurrence times for the past 2000 years of 320–390 years. Assuming that the 1999 slip (2.7 m average, 5 m maximum) is representative of the behavior of this fault, the above recurrence times yield a reference figure of fault slip rate in the range 6.9–15.6 mm/a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.