The present work provides a rationally‐based model to describe the pyrolysis of a single solid particle of biomass. As the phenomena governing the pyrolysis of a biomass particle are both chemical (primary and secondary reactions) and physical (mainly heat transfer phenomena), the presented model couples heat transport with chemical kinetics. The thermal properties included in the model are considered to be linear functions of temperature and conversion, and have been estimated from literature data or by fitting the model with experimental data. The heat of reaction has been found to be represented by two values: one endothermic, which prevails at low conversions and the other exothermic, which prevails at high conversions. Pyrolysis phenomena have been simulated by a scheme consisting of two parallel reactions and a third reaction for the secondary interactions between charcoal and volatiles. The model predictions are in agreement with experimental data regarding temperature and mass‐loss histories of biomass particles over a wide range of pyrolysis conditions.
The catalytic cracking of polyethylene has been studied over two natural clays and their pillared
analogues with a view toward assessing their suitability in a process for recycling plastic waste
to fuel. Although these clays were found to be less active than US-Y zeolite around 600 K, at
slightly higher process temperatures, they were able to completely decompose polyethylene. Their
yields to liquid products were around 70%, compared to less than 50% over US-Y zeolite.
Moreover, the liquid products obtained over the clay catalysts were heavier. Both of these facts
are attributed to the milder acidity of clays, as the very strong acidity characterizing zeolites
leads to overcracking. Furthermore, this milder acidity leads to significantly lower occurrence
of hydrogen-transfer secondary reactions compared to US-Y zeolite, and as a consequence,
predominantly alkenes were the products over the clay catalysts. An additional advantage of
these catalysts is the considerably lower amount of coke formed.
A complete and consistent set of 60 Benson group additive values (GAVs) for oxygenate molecules and 97 GAVs for oxygenate radicals is provided, which allow to describe their standard enthalpies of formation, entropies and heat capacities. Approximately half of the GAVs for oxygenate molecules and the majority of the GAVs for oxygenate radicals have not been reported before. The values are derived from an extensive and accurate database of thermochemical data obtained by ab initio calculations at the CBS-QB3 level of theory for 202 molecules and 248 radicals. These compounds include saturated and unsaturated, α- and β-branched, mono- and bifunctional oxygenates. Internal rotations were accounted for by using one-dimensional hindered rotor corrections. The accuracy of the database was further improved by adding bond additive corrections to the CBS-QB3 standard enthalpies of formation. Furthermore, 14 corrections for non-nearest-neighbor interactions (NNI) were introduced for molecules and 12 for radicals. The validity of the constructed group additive model was established by comparing the predicted values with both ab initio calculated values and experimental data for oxygenates and oxygenate radicals. The group additive method predicts standard enthalpies of formation, entropies, and heat capacities with chemical accuracy, respectively, within 4 kJ mol(-1) and 4 J mol(-1) K(-1) for both ab initio calculated and experimental values. As an alternative, the hydrogen bond increment (HBI) method developed by Lay et al. (T. H. Lay, J. W. Bozzelli, A. M. Dean, E. R. Ritter, J. Phys. Chem.- 1995, 99, 14514) was used to introduce 77 new HBI structures and to calculate their thermodynamic parameters (Δ(f)H°, S°, C(p)°). The GAVs reported in this work can be reliably used for the prediction of thermochemical data for large oxygenate compounds, combining rapid prediction with wide-ranging application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.