Effective utilization of cache memories is a key factor in achieving high performance in computing the Discrete Fourier Transform (DFT). Most optimization techniques for computing the DFT rely on either modifying the computation and data access order or exploiting low level platform specific details, while keeping the data layout in memory static. In this paper, we propose a high level optimization technique, dynamic data layout (DDL). In DDL, data reorganization is performed between computations to effectively utilize the cache. This cache-conscious factorization of the DFT including the data reorganization steps is automatically computed by using efficient techniques in our approach. An analytical model of the cache miss pattern is utilized to predict the performance and explore the search space of factorizations. Our technique results in up to a factor of 4 improvement over standard FFT implementations and up to 33% improvement over other optimization techniques such as copying on SUN UltraSPARC-II, DEC Alpha and Intel Pentium III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.