Ce(1-x)Pr(x)O(2-δ) (0 ≤ x ≤ 0.4) nanocrystals were synthesized by self-propagating method and thoroughly characterized using X-ray diffraction, Raman and X-ray photoelectron spectroscopy and magnetic measurements. Undoped CeO₂ nanocrystals exhibited intrinsic ferromagnetism at room temperature. Despite the increased concentration of oxygen vacancies in doped samples, our results showed that ferromagnetic ordering rapidly degrades with Pr doping. The suppression of ferromagnetism can be explained in terms of the different dopant valence state, the different nature of the vacancies formed in Pr-doped samples and their ability/disability to establish the ferromagnetic ordering.
Room-temperature ferromagnetism was observed in undoped and Fe2+(3+)-doped CeO2 nanocrystals. In Fe-doped samples the enhancement of ferromagnetic ordering occurs by changing the valence state of Fe ions, whereas Raman spectra demonstrated strong electron-molecular vibrational coupling and increase in oxygen vacancy concentration. Air annealing showed degradation of ferromagnetic ordering and appearance of hematite phase in Fe3+-doped sample. The observed ferromagnetic coupling in Fe-doped samples, associated with the presence of magnetic ions mediated by single charged O2− vacancies, demonstrated that valence state of dopant has a strong influence on magnetic properties of CeO2 nanoparticles.
Barium titanate, BaTiO3 ceramic powders were prepared by mechanochemical synthesis and by the Pechini method. A powder mixture of BaO and TiO2 was treated in a planetary ball mill in an air atmosphere for up to 1 h, using zirconium oxide vial and zirconium oxide balls as the milling medium. After 60 min BaTiO3 phase was formed. In both ways BaTiO3 ceramics were sintered after 2 h on 1300 • C without pre-calcinations step. The heating rate was 10 • C min −1 . The formation of phase and crystal structure of BaTiO3 was approved by X-ray diffraction analysis and the Raman spectroscopy. The morphology and microstructure of obtained powders were examined by scanning electron microscopy method. Sharp phase transition from ferroelectric to paraelectric state was observed. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.
Ultrafine CeO2-δ nanopowder, prepared by a simple and cost-effective self-propagating room temperature synthesis method (SPRT), showed high adsorption capability for removal of different azo dyes. Batch type of adsorption experiments with fixed initial pH value were conducted for the removal of Reactive Orange 16 (RO16), Methyl Orange (MO), and Mordant Blue 9 (MB9). The equilibrium adsorption data were evaluated using Freundlich and Langmuir isotherm models. The Langmuir model slightly better describes isotherm data for RO16 and MO, whereas the Freundlich model was found to best fit the isotherm data for MB9 over the whole concentration range. The maximum adsorption capacities, determined from isotherm data for MO, MB9, and RO16 were 113, 101, and 91 mg g(-1) respectively. The adsorption process follows the pseudo-second-order kinetic model indicating the coexistence of chemisorption and physisorption. The mechanism of azo dye adsorption is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.