The evolutionary origin of the striking genome size variations found in eukaryotes remains enigmatic. The effective size of populations, by controlling selection efficacy, is expected to be a key parameter underlying genome size evolution. However, this hypothesis has proved difficult to investigate using empirical data sets. Here, we tested this hypothesis using 22 de novo transcriptomes and low-coverage genomes of asellid isopods, which represent 11 independent habitat shifts from surface water to resource-poor groundwater. We show that these habitat shifts are associated with higher transcriptome-wide [Formula: see text] After ruling out the role of positive selection and pseudogenization, we show that these transcriptome-wide [Formula: see text] increases are the consequence of a reduction in selection efficacy imposed by the smaller effective population size of subterranean species. This reduction is paralleled by an important increase in genome size (25% increase on average), an increase also confirmed in subterranean decapods and mollusks. We also control for an adaptive impact of genome size on life history traits but find no correlation between body size, or growth rate, and genome size. We show instead that the independent increases in genome size measured in subterranean isopods are the direct consequence of increasing invasion rates by repeat elements, which are less efficiently purged out by purifying selection. Contrary to selection efficacy, polymorphism is not correlated to genome size. We propose that recent demographic fluctuations and the difficulty of observing polymorphism variation in polymorphism-poor species can obfuscate the link between effective population size and genome size when polymorphism data are used alone.
BackgroundIxodes ricinus is the most important vector of tick-borne diseases in Europe. A better knowledge of its genome and transcriptome is important for developing control strategies. Previous transcriptomic studies of I. ricinus have focused on gene expression during the blood meal in specific tissues. To obtain a broader picture of changes in gene expression during the blood meal, our study analysed the transcriptome at the level of the whole body for both nymphal and adult ticks. Ixodes ricinus ticks from a highly inbred colony at the University of Neuchâtel were used. We also analysed previously published RNAseq studies to compare the genetic variation between three wild strains and three laboratory strains, including the strain from Neuchâtel.ResultsRNA was extracted from whole tick bodies and the cDNA was sequenced, producing 162,872,698 paired-end reads. Our reference transcriptome contained 179,316 contigs, of which 31% were annotated using Trinotate. Gene expression was compared between ticks that differed by feeding status (unfed vs partially fed). We found that blood-feeding in nymphs and female adult ticks increased the expression of cuticle-associated genes. Using a set of 3866 single nucleotide polymorphisms to calculate the heterozygosity, we found that the wild tick populations of I. ricinus had much higher levels of heterozygosity than the three laboratory populations.ConclusionUsing high throughput strand-oriented sequencing for whole ticks in different stages and feeding conditions, we obtained a de novo assembly that significantly increased the genomic resources available for I. ricinus. Our study illustrates the importance of analysing the transcriptome at the level of the whole body to gain additional insights into how gene expression changes over the life-cycle of an organism. Our comparison of several RNAseq datasets shows the power of transcriptomic data to accurately characterize genetic polymorphism and for comparing different populations or sources of sequencing material.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2932-3) contains supplementary material, which is available to authorized users.
Hard ticks are widely distributed across temperate regions, show strong variation in host associations, and are potential vectors of a diversity of medically important zoonoses, such as Lyme disease. To address unresolved issues with respect to the evolutionary relationships among certain species or genera, we produced novel RNA-Seq data sets for nine different Ixodes species. We combined this new data with 18 data sets obtained from public databases, both for Ixodes and non-Ixodes hard tick species, using soft ticks as an outgroup. We assembled transcriptomes (for 27 species in total), predicted coding sequences and identified single copy orthologues (SCO). Using Maximum-likelihood and Bayesian frameworks, we reconstructed a hard tick phylogeny for the nuclear genome. We also obtained a mitochondrial DNA-based phylogeny using published genome sequences and mitochondrial sequences derived from the new transcriptomes. Our results confirm previous studies showing that the Ixodes genus is monophyletic and clarify the relationships among Ixodes sub-genera. This work provides a baseline for studying the evolutionary history of ticks: we indeed found an unexpected acceleration of substitutions for mitochondrial sequences of Prostriata, and for nuclear and mitochondrial genes of two species of Rhipicephalus, which we relate with patterns of genome architecture and changes of life-cycle, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.