Abstract. This paper aims to discusses the extraction of urban features from airborne NISAR (NASA-ISRO SAR) data using deep learning algorithm for a part of Ahmedabad City. NISAR data is acquired in two wavelength bands (L and S) in hybrid polarization i.e., RH and RV. This study has used level two data viz., amplitude data. Pre-processing of NISAR data in L and S wavelength bands was carried out by using MIDAS, software developed and provided by the Space Applications Centre. Pre-processing viz., Speckle suppression using different filters in varying window sizes, radiometric and geometric calibration was performed. Variation of backscattering coefficient (Sigma- nought) in different wavelengths and polarizations for different land use features were analysed. NISAR data in conjunction with LISS 4 (5.8 m resolution) data is subjected to different fusion techniques. Qualitative and Quantitative analysis was carried out and Gram Schmidt technique was chosen for further analysis. Segmentation was performed to achieve better analysis of the fused image and the amplitude image. Lastly, a deep learning architecture was developed for the automatic classification of the image, and the Convolution Neural Network model was designed using mobile net and the regularization techniques. Deep learning architecture in conjunction with e-cognition developer was used for extracting urban features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.