Aims. We aim to expand our understanding of radio wave emission and propagation in the pulsar magnetosphere by studying the polarisation of drifting sub-pulses in highly sensitive observations of PSR B1919+21 recorded at the Arecibo Observatory. Methods. We apply and compare several methods of analysis and visualisation, including eigenvalue analysis of the longitude-resolved covariances between the Stokes parameters; longitude-resolved scatter plots of the normalised Stokes vectors in the Poincaré sphere; auto- and cross-correlations between the Stokes parameters as a function of offset in pulse longitude and lag in pulse number; and mean drift bands of polarisation state, formed by averaging the Stokes parameters and quantities derived from them synchronously with the drifting sub-pulse modulation period. Results. We observe regions of pulse longitude where the superposition of orthogonally polarised modes is best described as incoherent and regions where the superposition appears to be at least partially coherent. Within the region of coherent superposition, over a range of pulse longitudes spanning ∼2°, the distribution of the Stokes polarisation vectors forms a torus centered near the origin of the Poincaré sphere. Furthermore, the polarisation vectors rotate about the axis of revolution of the torus synchronously with the drifting sub-pulse modulation of the total intensity. Conclusions. The nearly uniform circular modulation of polarisation state, clearly evident in both the toroidal distribution of the Stokes polarisation vectors and the mean drift bands of the Stokes parameters, is not predicted by current theoretical models of pulsar emission. We propose different scenarios to explain the generation of the torus, based on either incoherent or phase-coherent superposition of orthogonally polarised modes.
The BL Lac-type object 3C 66A was observed at the Crimean Astrophysical Observatory during the international project OJ-94. Observations were made over 10 nights from February through December 2003 at the Cassegrain focus of the 125-cm AZT-11 telescope with a photopolarimeter capable of simultaneous measurements in the UBVRI bands. In the course of our measurements the brightness of the object increased by more than 1 magnitude in all these bands. Its color indices varied and the degree of polarization decreased from ~16% in February to ~3% at the end of our observations. In December 2003 a rapid change in the position angle from 15° to 40° was noticed. The spectral energy distribution F n is well described by a power law with a spectral index a (). The increase in brightness was accompanied by a reduction in the spectral index. The most probable mechanism for the observed changes in the brightness, degree of polarization, and spectral index may be a decrease in the magnetic field strength or a change in its configuration owing to a increase in the chaotic component of the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.