Context. Early B-type stars are ideal indicators for present-day cosmic abundances since they preserve their pristine abundances and typically do not migrate far beyond their birth environments over their short lifetimes, in contrast to older stars like the Sun. They are also unaffected by depletion onto dust grains, unlike the cold/warm interstellar medium (ISM) or H ii regions. Aims. A carefully selected sample of early B-type stars in OB associations and the field within the solar neighbourhood is studied comprehensively. Quantitative spectroscopy is used to characterise their atmospheric properties in a self-consistent way. Present-day abundances for the astrophysically most interesting chemical elements are derived in order to investigate whether a present-day cosmic abundance standard can be established. Methods. High-resolution and high-S/N FOCES, FEROS and ELODIE spectra of well-studied sharp-lined early B-type stars are analysed in non-LTE. Line-profile fits based on extensive model grids and an iterative analysis methodology are used to constrain stellar parameters and elemental abundances at high accuracy and precision. Atmospheric parameters are derived from the simultaneous establishment of independent indicators, from multiple ionization equilibria and the Stark-broadened hydrogen Balmer lines, and they are confirmed by reproduction of the stars' global spectral energy distributions. Results. Effective temperatures are constrained to 1-2% and surface gravities to less than 15% uncertainty, along with accurate rotational, micro-and macroturbulence velocities. Good agreement of the resulting spectroscopic parallaxes with those from the new reduction of the Hipparcos catalogue is obtained. Absolute values for abundances of He, C, N, O, Ne, Mg, Si and Fe are determined to better than 25% uncertainty. The synthetic spectra match the observations reliably over almost the entire visual spectral range. Three sample stars, γ Ori, o Per and θ 1 Ori D, are identified as double-lined, indicating the presence of an early/mid B-type companion. Conclusions. A present-day cosmic abundance standard is established from a sample of 29 early B-type stars, indicating abundance fluctuations of less than 10% around the mean. Our results (i) resolve the long-standing discrepancy between a chemical homogeneous gas-phase ISM and a chemically inhomogeneous young stellar component out to several hundred parsec from the Sun, (ii) facilitate the amount of heavy elements locked up in the interstellar dust to be constrained precisely -the results imply that carbonaceous dust is largely destroyed inside the Orion H ii region, unlike the silicates, and that graphite is only a minority species in interstellar dust -, (iii) show that the mixing of CNO-burning products in the course of massive star evolution follows tightly the predicted nuclear path, (iv) provide reliable present-day reference points for anchoring Galactic chemical evolution models to observation, and (v) imply that the Sun has migrated outwards from the inne...
A quantitative spectral analysis of 24 A supergiants in the Sculptor Group spiral galaxy NGC 300 at a distance of 1.9 Mpc is presented. A new method is introduced to analyze low resolution (∼ 5Å) spectra, which yields metallicities accurate to 0.2 dex including the uncertainties arising from the errors in T eff (5%) and log g (0.2 dex). For the first time the stellar metallicity gradient based on elements such as titanium 1 Based on VLT observations for ESO Large Programme 171.D-0004.
A representative sample of unevolved early B-type stars in nearby OB associations and the field is analysed to unprecedented precision using NLTE techniques. The resulting chemical composition is found to be more metal-rich and much more homogeneous than indicated by previous work. A rms scatter of ∼10% in abundances is found for the six stars (and confirmed by six evolved stars), the same as reported for ISM gas-phase abundances. A cosmic abundance standard for the present-day solar neighbourhood is proposed, implying mass fractions for hydrogen, helium and metals of X = 0.715, Y = 0.271 and Z = 0.014. Good agreement with solar photospheric abundances as reported from recent 3D radiative-hydrodynamical simulations of the solar atmosphere is obtained. As a first application we use the cosmic abundance standard as a proxy for the determination of the local ISM dust-phase composition, putting tight observational constraints on dust models.
Luminous BA-type supergiants have enormous potential for modern astrophysics. They allow topics ranging from non-LTE physics and the evolution of massive stars to the chemical evolution of galaxies and cosmology to be addressed. A hybrid non-LTE technique for the quantitative spectroscopy of these stars is discussed. Thorough tests and first applications of the spectrum synthesis method are presented for the bright Galactic objects η Leo (A0 Ib), HD 111613 (A2 Iabe), HD 92207 (A0 Iae) and β Ori (B8 Iae), based on high-resolution and high-S/N Echelle spectra. Stellar parameters are derived from spectroscopic indicators, consistently from multiple non-LTE ionization equilibria and Starkbroadened hydrogen line profiles, and they are verified by spectrophotometry. The internal accuracy of the method allows the 1σ-uncertainties to be reduced to < ∼ 1−2% in T eff and to 0.05−0.10 dex in log g. Elemental abundances are determined for over 20 chemical species, with many of the astrophysically most interesting in non-LTE (H, He, C, N, O, Mg, S, Ti, Fe). The non-LTE computations reduce random errors and remove systematic trends in the analysis. Inappropriate LTE analyses tend to systematically underestimate iron group abundances and overestimate the light and α-process element abundances by up to factors of two to three on the mean. This is because of the different responses of these species to radiative and collisional processes in the microscopic picture, which is explained by fundamental differences of their detailed atomic structure, and not taken into account in LTE. Contrary to common assumptions, significant non-LTE abundance corrections of ∼0.3 dex can be found even for the weakest lines (W λ < ∼ 10 mÅ). Non-LTE abundance uncertainties amount to typically 0.05−0.10 dex (random) and ∼0.10 dex (systematic 1σ-errors). Near-solar abundances are derived for the heavier elements in the sample stars, and patterns indicative of mixing with nuclear-processed matter for the light elements. These imply a blue-loop scenario for η Leo because of first dredge-up abundance ratios, while the other three objects appear to have evolved directly from the main sequence. In the most ambitious computations several ten-thousand spectral lines are accounted for in the spectrum synthesis, permitting the accurate reproduction of the entire observed spectra from the visual to near-IR. This prerequisite for the quantitative interpretation of intermediate-resolution spectra opens up BA-type supergiants as versatile tools for extragalactic stellar astronomy beyond the Local Group. The technique presented here is also well suited to improve quantitative analyses of less extreme stars of similar spectral types.
Context. The nature of the progenitors of type Ia supernovae is still under debate. KPD 1930+2752 is one of the best SN Ia progenitor candidates known today. The object is a double degenerate system consisting of a subluminous B star (sdB) and a massive white dwarf (WD). Maxted et al. (2000) conclude that the system mass exceeds the Chandrasekhar mass. This conclusion, however, rests on the assumption that the sdB mass is 0.5 M . However, recent binary population synthesis calculations suggest that the mass of an sdB star may range from 0.3 M to more than 0.7 M . Aims. It is therefore important to measure the mass of the sdB star simultaneously with that of the white dwarf. Since the rotation of the sdB star is tidally locked to the orbit, the inclination of the system can be constrained if the sdB radius and the projected rotational velocity can be measured with high precision. An analysis of the ellipsoidal variations in the light curve allows the constraints derived from spectroscopy to be tightened. Methods. We derived the mass-radius relation for the sdB star from a quantitative spectral analysis of 150 low-resolution spectra obtained with the Calar Alto 2.2 m telescope using metal-rich, line-blanketed LTE model atmospheres with and without NLTE line formation. The projected rotational velocity was determined for the first time from 200 high-resolution spectra obtained with the Keck I 10 m and with the ESO-VLT 8.2 m telescopes. In addition a reanalysis of the published light curve was performed. Results. The atmospheric and orbital parameters were measured with unprecedented accuracy. In particular the projected rotational velocity v rot sin i = 92.3 ± 1.5 km s −1 was determined. Assuming the companion to be a white dwarf, the mass of the sdB is limited between 0.45 M and 0.64 M and the corresponding total mass of the system ranges from 1.33 M to 2.04 M . This constrains the inclination to i > 68• . The photometric analysis allows the parameters to be constrained even more. A neutron star companion can be ruled out and the mass of the sdB is limited to the range between 0.45 M and 0.52 M . The total mass of the system ranges from 1.36 M to 1.48 M and hence is likely to exceed the Chandrasekhar mass. The inclination angle is 80• and the light curve shows weak and shallow signs of eclipses. A high-precision light curve is needed in order to accurately measure these eclipses. So KPD 1930+2752 qualifies as an excellent double degenerate supernova Ia progenitor candidate. Conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.