Summary Cancer cells consume glucose and secrete lactate in culture. It is unknown whether lactate contributes to energy metabolism in living tumors. We previously reported that human non-small cell lung cancers (NSCLC) oxidize glucose in the tricarboxylic acid (TCA) cycle. Here we show that lactate is also a TCA cycle carbon source for NSCLC. In human NSCLC, evidence of lactate utilization was most apparent in tumors with high 18fluorodeoxyglucose uptake and aggressive oncological behavior. Infusing human NSCLC patients with 13C-lactate revealed extensive labeling of TCA cycle metabolites. In mice, deleting monocarboxylate transporter-1 (MCT1) from tumor cells eliminated lactate-dependent metabolite labeling, confirming tumor-cell autonomous lactate uptake. Strikingly, directly comparing lactate and glucose metabolism in vivo indicated that lactate's contribution to the TCA cycle predominates. The data indicate that tumors, including bona fide human NSCLC, can use lactate as a fuel in vivo.
Clear cell renal cell carcinoma (ccRCC) is characterized by BAP1 and PBRM1 mutation, which are associated with tumors of different grade and prognosis. However, whether BAP1 and PBRM1 loss causes ccRCC and determines tumor grade is unclear. We conditionally targeted Bap1 and Pbrm1 (with Vhl) in the mouse using several Cre drivers. Sglt2 and Villin proximal convoluted tubule drivers failed to cause tumorigenesis, challenging the conventional notion of ccRCC origins. In contrast, targeting with Pax8, a developmental lineage-specific transcription factor, led to ccRCC of different grade. Bap1-deficient tumors were high grade and showed greater mTORC1 activation than Pbrm1-deficient tumors, which exhibited longer latency. Disrupting one allele of the mTORC1 negative regulator, Tsc1, in Pbrm1-deficient kidneys triggered higher grade ccRCC. This study establishes Bap1 and Pbrm1 as lineage-specific drivers of ccRCC and histological grade, implicates mTORC1 as a tumor grade rheostat, and suggests that ccRCC may arise from Bowman capsule cells.
Mn complexes formed with cis- and trans-DO2A (DO2A=1,4,7,10-tetraazacyclododecane-1,4 (or 1,7) -diacetic acid) chelators were investigated by pH-potentiometry, H relaxometry, UV-vis spectrophotometry and cyclic voltammetry. The physico-chemical characteristics of Mn complexes of these structure isomers do not differ dramatically, however the cis-DO2A platform has better potential for further development. Manganese (Mn) is a promising alternative to gadolinium (Gd) as a magnetic resonance imaging (MRI) agent. Unlike gadolinium, this biogenic metal might be better tolerated by the body, reducing the risk of toxicity associated with dissociation of the complex. Herein we report detailed equilibrium and kinetic studies performed with Mn complexes of 1,4,7,10-tetraazacyclododecane-1,4-diacetic acid (1,4-DO2A or cis-DO2A) and 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (1,7-DO2A or trans-DO2A). The protonation constants of the ligands as well as stability constants of their Mn complexes have been determined by pH-potentiometry. The stability constants of [Mn(cis-DO2A)] are slightly higher than those of [Mn(trans-DO2A)] (log K=15.68 and 15.22, respectively). Cyclic voltammetric (CV) experiments performed on [Mn(cis-DO2A)] and [Mn(trans-DO2A)] revealed quasireversible systems with a half-wave potential of +636 and +705mV versus Ag/AgCl, respectively. These values indicate that the Mn ion in these complexes is more stabilized against the oxidation than in [Mn(EDTA)]. The kinetic inertness of the complexes has been studied in transmetallation reactions with Cu or Zn ions. Kinetic measurements indicate that both Mn complexes primarily undergo acid catalyzed dissociation and positions of the acetate pendant arms do not influence kinetic inertness. The inertness of these complexes is comparable to that of [Mn(NOTA)] (NOTA=1,4,7-triazacyclononane-1,4,7-triacetic acid) and about twenty times lower than that of [Mn(DOTA)] (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). In conclusion, [Mn(cis-DO2A)] displays some very interesting features (thermodynamic and redox stability as well as kinetic inertness) which makes this complex a promising platform for the development of more efficient Mn complexes as alternatives to Gd-based MRI agents.
A novel approach for the design of responsive paramagnetic chemical exchange saturation transfer (PARACEST) magnetic resonance imaging (MRI) agents has been developed where the signal is “turned on” by altering the longitudinal relaxation time (T1) of bulk water protons. To demonstrate this approach, a model Eu(DOTA-tetraamide) complex (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) containing two nitroxide free radical units was synthesized. The nitroxide groups substantially shortened the T1 of the bulk water protons which, in turn, resulted in quenching of the CEST signal. Reduction of paramagnetic nitroxide moieties to a diamagnetic species resulted in the appearance of CEST. The modulation of CEST by T1 relaxation provides a new platform for designing biologically responsive MRI agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.