As a relatively new material, geopolymer concrete offers the benefits as a construction material for sustainable development. It utilized waste materials such as recycled concrete sludge, fly ash and etc. It has a very low rate of green house gas emission when compared to ordinary Portland cement. In this study, the component of geopolymer is concrete sludge, metakaolin and water glass, NaOH was used as alkalin activator. To improve the mechanical properties, the amount of NaOH and water glass were varied to obtain higher strength and the specimens were cured both in air and water, then their mechanical properties like compressive strength and bending strength were measured the microstructures were investigated.
Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.
Pure Titanium alloys are superiorities of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy is related to the surface effect. In this study, Ti Alloys were treated by alkali and acid activation process. And through the sol coating layer, biocompatibility were investigated. Consequently, it appeared that the porous layer was generated on the surface of alloy by surface treatment and sol coating process. It was found that with surface treatment on Ti alloy, the formation speed of porous was much quicker compared with those ones without treatment. Therefore, the biocompatibility was improved.
Titanium alloys are superior of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy is related to the surface effect between human tissue and implant. Therefore, the purpose of this study is to investigate the bioactivity of Ti alloy by alkali and acid chemical surface treatment; and the biocompatibility of Ti alloy was evaluated by in vitro test. Higher bone-bonding ability and bioactivity of the substrate were obtained by the formation of apatite layers on the Ti alloy in simulated body fluid. The microstructures of apatite layer were investigated by scanning electron microscope (SEM) and the formed phases were analyzed with X-ray diffraction (XRD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.