Characteristics of solid state joints obtained by ultrasonic welding (USW) of commercially pure copper plate samples of 0.5 mm thickness, including samples welded with intermediate layers of commercial and ultrafine-grained (UFG) plates of the same material of 0.2 mm thickness, were studied. Welding regimes with processing times 1 and 2 s and static loads 5 and 7 kN at vibration amplitude about 15 µm were used. For each regime and sample type three samples were obtained and subjected to lap shear testing. Analysis of results has shown that at both values of static load the increase in processing time from 1 to 2 s leads to an increase of the strength of weld joints. While with the small welding duration the increase in the load does not lead to a change of the joint strength, with the longer welding time 2 s a noticeable increase of the joint strength with the static load is observed. For the given thickness of intermediate layers lap shear strength of joint does not depend on their presence and structure: for every sample type welded with the same regime the value of strength is the same within the margin of errors. However, presence of the intermediate layer qualitatively affects the elongation curve during shear testing: samples welded without an intermediate layer fail with practically instant simultaneous separation of joined surfaces after achievement of the maximum stress, whereas at the presence of an intermediate layer after achieving the maximum stress a smooth decrease of the stress occurs. This is related to the deformation of material in the area of joint. There are also differences observed in the macrostructure of sample surfaces in the area of failure after lap shear testing. The absence of the increase of joint strength in the presence of intermediate layers was explained by plastic deformation in the areas of stress concentration.
Ultrasonic consolidation of commercially pure copper plates with coarse-grained and ultrafine grained structures was carried out. Copper plates in both states were joined by ultrasonic welding using the same route. Consolidated samples were studied in a cross section parallel to the oscillation direction. The compressive strain value and the joint quality in relation to the initial structure of the material were studied. It is shown that the ultrasonic consolidation is a promising method of additive manufacturing using bulk nanostructured materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.