INTRODUCTION: Distribution network is mainly affected by the end user load nature. Ruinous influence on power system operation based on the type of load used by the end user and due to the presence of non-linear loads causes Harmonics in power system. The concept of reducing the harmful effect of harmonics on power system attracted the research attentiveness. OBJECTIVES: To reduce these harmonics and reactive power problems FACTS devices are found reliable. Out of various FACTS devices, Active Power Filter (APF) is one FACTS device which identifies and controls the harmonic contamination in power system with non-linear loads. This work mainly presents a parallel APF concept for the compensation of harmonics to improve the reliability of the system. METHODS: The main contribution of this work is proposal of single control strategy for compensation of Power quality. Corrective back currents (for parallel APF) to compensate the identified harmonics are generated using modified d-q reference-based control methodology. RESULTS: The models are developed, and analysis is presented using MATLAB/SIMULINK software CONCLUSION: d-q reference theory control strategy is explained in detail. Load current, Source Voltage and DC link voltage which are measured using various sensors and send to processor. modified d-q reference the signals to be measured are same
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.