W7-AS has recently been equipped with ten open divertor modules in order to experimentally evaluate the island divertor concept. First results are reported in this paper. The new divertors enable access to a new NBI-heated, very high density (up to ne = 3.5 × 10 20 m −3 ) operating regime with promising confinement properties. The energy confinement time increases steeply with density and then saturates. In contrast, the particle and impurity confinement times decrease with increasing density. This allows full density control and quasi-steady-state operation also under conditions of partial detachment from the divertor targets. Radiated power fractions are low to moderate in attached regimes and reach up to about 90% in detachment scenarios. The radiation always stays peaked at the edge. The extremely high densities necessitated the development of non-standard heating techniques for central heating. For the first time efficient heating of an NBI target plasma by electron Bernstein waves (140 GHz, second harmonic) is achieved. In addition, this heating scenario enables fine tuning of the upstream boundary conditions for divertor operation.
A promising new plasma operational regime on the Wendelstein stellarator W7-AS has been discovered. It is extant above a threshold density and characterized by flat density profiles, high energy and low impurity confinement times, and edge-localized radiation. Impurity accumulation is avoided. Quasistationary discharges with line-averaged densities n(e) to 4 x 10(20) m(-3), radiation levels to 90%, and partial plasma detachment at the divertor target plates can be simultaneously realized. Energy confinement is up to twice that of a standard scaling. At B(t) = 0.9 T, an average beta value of 3.1% is achieved. The high n(e) values allow demonstration of electron Bernstein wave heating using linear mode conversion.
This paper presents a detailed analysis of the transport behaviour of the detached plasmas in W7-AS based on an extended numerical study using the EMC3-EIRENE code, aimed at understanding the underlying physics responsible for the geometry-dependent detachment stability observed in W7-AS island divertor experiments. Here, a stable detachment can only be established when the control coils are switched on to generate sufficiently large islands with relatively short connection lengths. Special attention will be paid to a discussion of the carbon radiation, location and dynamics of the radiation layer, the neutral screening efficiency specific to the island divertor geometry and its impact on the detachment stability. Based on the three-dimensional simulation results, a linear stability model is presented in order to obtain some insight into the mechanisms driving the instability. The radiation behaviour and the location and evolution of the radiation zone in the island divertor will be discussed with respect to those of tokamak-MARFEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.