Colorectal-cancer (CRC) is the third leading cause of death due to cancer, supporting the need for identification of novel anticancer drug to improve the efficacy of current-therapy. There is growing bodies of data showing the antitumor-activity of curcumin, although it is associated with low absorption. The aim of current study was explored the therapeutic-potential of novel phytosomal curcumin as well as its application in combination with 5-Flurouracil (5-FU) in a mouse-model of colitis-associated colon-cancer. The anti-proliferative-activity of phytosomal curcumin was assessed in 2- and 3-dimensional cell-culture-models as well as in a mouse-model of colitis-associated colon-cancer. The expression-levels of CyclinD1, beclin, E-cadherin, and p-GSK3a/b were investigated by qRT-PCR and/or Western-blotting. We evaluated the anti-inflammatory of this agent by pathological-evaluation and disease-activity-index (DAI). Moreover, oxidant/antioxidant activity was examined by malondialdehyde (MDA), total-thiols (T-SH), superoxide-dismutase (SOD), and catalase (CAT) activity parameters. Our data showed that phytosomal curcumin and its combination with 5-FU inhibited cell growth and invasive behavior of CRC cells through modulation of Wnt-pathway and E-cadherin. Combination of curcumin with 5-FU dramatically reduced the tumor-number and tumor-size in both distal and middle parts of colon in colitis-associated colon cancer followed by reduction in DAI. Also, curcumin suppressed the colonic inflammation and notably recovered the increased levels of MDA, decreased thiol level and reduced activity of CAT. We demonstrated the antitumor-activity of novel form of curcumin in CRC, supporting further investigations on the therapeutic-potential of this approach in colorectal-cancer.
Colorectal cancer (CRC) is the third most common cause of cancer-related death, and hence there is a need for the identification of novel-agents to improve the efficacy of existing therapies. There is growing evidence for the antitumor activity of crocin, although its activity and molecular mechanisms in CRC remains to be elucidated. Here we explored the therapeutic application of crocin or its combination with 5-flurouracil in a mouse model of colitis-associated colon cancer. The antiproliferative activity of crocin was assessed in two-dimensional and three-dimensional cell-culture models. The migratory behaviors were determined, while the expression levels of several genes were assessed by quantitative reverse transcriptase polymerase chain reaction/Western blot analysis. We examined the anti-inflammatory properties of crocin by pathological evaluation and disease-activity index as well as oxidative or antioxidant markers: malondialdehyde (MDA) and total-thiols (T-SH) levels and superoxide dismutase (SOD) and catalase (CAT) activity. Crocin suppressed cell-growth and the invasive behavior of CRC cells through modulation of the Wnt-pathway and E-cadherin. Moreover, administration of crocin alone, or in combination with 5-FU dramatically reduced the tumor number and tumor size in both distal/mid-colon followed by reduction in disease-activity index. Crocin also suppressed the colonic inflammation induced by dextran-sulfate-sodium and notably recovered the increased levels of MDA, decreased thiol levels and activity of CAT levels. Crocin was able to ameliorate the severe inflammation with mucosal ulcers and high-grade dysplastic crypts as detected by inflammation score, crypt loss, pathological changes and histology scores. We demonstrated an antitumor activity of crocin in CRC and its potential role in improvement of inflammation with mucosal ulcers and high-grade dysplastic crypts, supporting the desireability of further investigations on the therapeutic potential of this approach in CRC.
BACKGROUND: Proinfl ammatory cytokines have been known to play a considerable part in the pathomechanisms of chronic heart failure (CHF). Given the importance of proinfl ammatory cytokines in the context of the failing heart, we assessed whether the polymorphisms of interleukin (IL)-1 gene cluster, including IL-1α, IL-1β, and IL-1 receptor antagonist (IL-1RA) and IL-1R gene are predictors of CHF due to ischemic heart disease. METHODS: Forty-three patients with ischemic heart failure were recruited in this study as patients group and compared with 140 healthy unrelated control subjects. Using polymerase chain reaction with sequence-specifi c primers method, the allele and genotype frequency of 5 single nucleotide polymorphisms (SNPs) within the IL-1α (-889), IL-1β (-511, +3962), IL-1R (psti 1970), and IL-1RA (mspa1 11100) genes were determined. RESULTS: The frequency of the IL-1β-511/C allele was signifi cantly higher in the patient group compared to that in the control group (p = 0.031). The IL-1β (-511) C/C genotype was signifi cantly overrepresented in patients compared to controls (p = 0.022). CONCLUSIONS: Particular allele and genotype in IL-1β gene were overrepresented in patients with ischemic heart failure, possibly affecting the individual susceptibility to this disease (Tab. 1, Ref. 27).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.