Abstract. Degradation of air quality level can affect human’s health especially respiratory and circulatory system. This is because the harmful particles will penetrate into human’s body through exposure to surrounding. The existence of air pollution event is one of the causes for air quality to be low in affected urban area. To monitor this event, a proper management of urban air quality is required to solve and reduce the impact on human and environment. One of the ways to manage urban air quality is by modelling ambient air pollutants. So, this paper reviews three modelling tools which are AERMOD, CALPUFF and CFD in order to visualise the air pollutants in urban area. These three tools have its own capability in modelling the air quality. AERMOD is better to be used in short range dispersion model while CALPUFF is for wide range of dispersion model. Somehow, it is different for CFD model as this model can be used in wide range of application such as air ventilation in clothing and not specifically for air quality modelling only. Because of this, AERMOD and CALPUFF model can be classified in air quality modelling tools group whereas CFD modelling tool is classified into different group namely a non-specific modelling tool group which can be implemented in many fields of study. Earlier air quality researches produced results in two-dimensional (2D) visualization. But there are several of disadvantages for this technique. It cannot provide height information and exact location of pollutants in three-dimensional (3D) as perceived in real world. Moreover, it cannot show a good representation of wind movement throughout the study area. To overcome this problem, the 3D visualization needs to be implemented in the urban air quality study. Thus, this paper intended to give a better understanding on modeling tools with the visualization technique used for the result of performed research.
Computational Fluid Dynamics (CFD) simulations are used to monitor air pollution events supported by real-world conditions digitally. Besides, wind flow that has a close relationship with air pollutants dispersion also can be visualized by using CFD simulation. The presence of a building, especially in terms of the building’s geometry, impacts the air pollution dispersion and wind flow that occur around a building or in a specific research area. As there is an involvement of building models in the simulation, some of the standards for the building modelling: Computer-Aided Design (CAD), City Geographic Markup Language (CityGML), and Building Information Modelling (BIM), are being utilized in this type of study. Many types of research have been conducted to study the pollutants and wind flow using the CFD technique of these three standards. Hence, this review paper is used to presents several pieces of research on this related topic. Through this review paper, some of the drawbacks of the study were identified, such as the detailing of the building’s geometry and the compatibility of each standard to be implemented in the CFD simulation.
Muscle fatigue in sports science is an established research area where various techniques and types of muscles have been studied in order to understand the fatigue condition. It can be used as an indicator for predicting muscle injury and other muscle problems which can decrease athletes’ performance. Muscle fatigue usually occurs after a long lasting or repeated muscular activity. Electromyography (EMG) assessment method is a standard tool used to evaluate muscle fatigue based on the signals from the neuromuscular activation during fatigue condition. However, additional time for equipment set up such as placement of the electrodes and the use of multiple wires make this overall setting a bit complicated. In addition, the signal from EMG which possessed some noise, need to be filtered and post processing time is also required to obtain a reliable measurement signal. Therefore, researchers have explored the application of thermal imaging technique as one of the alternative methods for muscle fatigue assessment. The objective of this study is to investigate the correlation of muscle fatigue condition measured using a non-invasive infrared thermal imaging technique and a standard evaluation method, EMG. Five healthy men were selected to run on a treadmill for 30 minutes with a constant speed setting. Temperature and EMG signals were registered from gastrocnemius muscle of the subjects' dominant leg simultaneously. Result obtained shows that the average temperature of gastrocnemius muscle decrease as subjects start to exercise. Further temperature decrease along with exercise and increase in temperature were observed during the recovery period. Statistical analysis was performed and analyzed using both temperature and EMG parameters. Result shows a significant strong correlation with r = 0.7707 and p < 0.05 between temperature difference and median frequency (MDF) for all subjects compared to average temperature. Therefore, it is concluded that temperature difference extracted from thermal images can be used as an ideal parameter for muscle fatigue evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.