Antimony, a natural element that has been used as a drug for over more than 100 years, has remarkable therapeutic efficacy in patients with acute promyelocytic leukemia. This review focuses on recent advances in developing antimony anticancer agents with an emphasis on antimony coordination complexes, Sb (III) and Sb (V). These complexes, which include many organometallic complexes, may provide a broader spectrum of antitumoral activity. They were compared with classical platinum anticancer drugs. The review covers the literature data published up to 2007. A number of antimonials with different antitumoral activities are known and have diverse applications, even though little research has been done on their possibilities. It might be feasible to develop more specific and effective inhibitors for phosphatase-targeted, anticancer therapeutics through the screening of sodium stibogluconate (SSG) and potassium antimonyltartrate-related compounds, which are comprised of antimony conjugated to different organic moieties. For example, SSG appears to be a better inhibitor than suramin which is a compound known for its antineoplastic activity against several types of cancers.
α-Ketoalkynes react with KCN, catalyzed by anionic
Ni(0) cyano complexes in water,
affording unsaturated hydroxylactams. The active anionic species,
thought to be
[Ni(CN)4]4-,
can be formed in situ from Ni(II) cyano compounds under various
reduction conditions. A
possible mechanism, excluding Ni−hydride intermediates, is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.