Unlike silver and gold, aluminum has material properties that enable strong plasmon resonances spanning much of the visible region of the spectrum and into the ultraviolet. This extended response, combined with its natural abundance, low cost, and amenability to manufacturing processes, makes aluminum a highly promising material for commercial applications. Fabricating Al-based nanostructures whose optical properties correspond with theoretical predictions, however, can be a challenge. In this work, the Al plasmon resonance is observed to be remarkably sensitive to the presence of oxide within the metal. For Al nanodisks, we observe that the energy of the plasmon resonance is determined by, and serves as an optical reporter of, the percentage of oxide present within the Al. This understanding paves the way toward the use of aluminum as a low-cost plasmonic material with properties and potential applications similar to those of the coinage metals.
In gratings, incident light can couple strongly to plasmons propagating through periodically spaced slits in a metal film, resulting in a strong, resonant absorption whose frequency is determined by the nanostructure periodicity. When a grating is patterned on a silicon substrate, the absorption response can be combined with plasmon-induced hot electron photocurrent generation. This yields a photodetector with a strongly resonant, narrowband photocurrent response in the infrared, limited at low frequencies by the Schottky barrier, not the bandgap of silicon. Here we report a grating-based hot electron device with significantly larger photocurrent responsivity than previously reported antenna-based geometries. The grating geometry also enables more than three times narrower spectral response than observed for nanoantenna-based devices. This approach opens up the possibility of plasmonic sensors with direct electrical readout, such as an on-chip surface plasmon resonance detector driven at a single wavelength.
The use of aluminum for plasmonic nanostructures opens up new possibilities, such as access to short-wavelength regions of the spectrum, complementary metal-oxide-semiconductor (CMOS) compatibility, and the possibility of low-cost, sustainable, mass-producible plasmonic materials. Here we examine the properties of individual Al nanorod antennas with cathodoluminescence (CL). This approach allows us to image the local density of optical states (LDOS) of Al nanorod antennas with a spatial resolution less than 20 nm and to identify the radiative modes of these nanostructures across the visible and into the UV spectral range. The results, which agree well with finite difference time domain (FDTD) simulations, lay the groundwork for precise Al plasmonic nanostructure design for a variety of applications.
Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1.RGB | chromaticity | array | electron beam lithography D isplay technologies have been evolving toward vivid, fullcolor, flat-panel displays with high resolution and/or small pixel sizes, higher energy efficiency, and improved benefit/cost ratios. Some of the most popular current technologies are liquid crystal displays (LCD), laser phosphor displays, also known as electroluminescent displays, and light-emitting diode (LED)-based displays. A common characteristic of all color display technologies is the incorporation of various color-producing media, which can be inorganic, organic, or polymeric materials, into the device. These chromatic materials are chosen to produce the fundamental components of the color spectrum in additive color schemes such as the standard red-green-blue (sRGB) when illuminated by an internal light source or when an electrical voltage is applied.Inorganic chromatic materials have the potential to greatly extend the durability and lifetime of color displays. Inorganic nanoparticles have recently begun to be used in color displays in the form of quantum dot LEDs, which have excellent display lifetimes and industry-scalable, size-based, and material-based color tunability (1-3). However, obtaining blue colors from quantum dots has been challenging (4) owing to the requirement of synthesizing nanoparticles in the small size range required to achieve optical transitions in this wavelength range. Au nanoparticles can produce green and red colors based on their surface plasmon resonances (5), but shorter-wavelength hues are quenched because of interband transitions for wavelengths below 520 nm (6). Ag has also been investigated for display applications (7, 8), but although spectral features can be achieved across the visible region the material readily oxidizes (9, 10), requiring additional passivation layers.Al is potentially a highly attractive material for plasmon-based full-spectrum displays. Al is the third most abundant element in the earth's crust, beh...
Abstract:We demonstrate the facile synthesis of high purity aluminum nanocrystals over a range of controlled sizes from 70 nm to 220 nm diameter, with size control achieved through a simple modification of solvent ratios in the reaction solution. The monodisperse, icosahedral and trigonal bipyramidal nanocrystals are air-stable for weeks, due to the formation of a 2-4 nm thick passivating oxide layer on their surfaces. We show that the nanocrystals support sizedependent ultraviolet and visible plasmon modes, providing a far more sustainable alternative to gold and silver nanoparticles currently in widespread use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.