This article develops and compares health indices using different approaches namely singular value decomposition, average value of the cumulative feature and Mahalanobis distance for assessing the rolling element bearing condition. The vibration signals for four conditions of rolling element bearing are acquired from a customized bearing test rig under variable load conditions. Seventeen statistical features are extracted from wavelet coefficients of the denoised signals. Feature selection is performed using singular value decomposition and kernel Fisher discriminant analysis. These selected features are used in these three approaches to develop health indices. Finally, a comparison of the three proposed approaches is made to select the best approach which can be effectively used for fault diagnosis of rolling element bearings.
Condition monitoring (CM) and fault diagnosis of equipments has gained greater attention in recent years, due to the need to reduce the down time and enhance the life/ condition of the equipments. The rolling element bearings (REB) are the most critical components in rotary machines. Hence, bearing fault detection and diagnosis is an integral part of the preventive maintenance activity. Vibration signal analysis provides wide range of information for analysis. So in this paper, vibration signals for four conditions of a deep groove ball bearing namely Normal (N), bearing with defect on inner race (IR), bearing with defect on ball (B), and bearing with defect on outer race (OR) have been acquired from a customized bearing test rig under maximum speed and variable load conditions. Depending on the machinery operating conditions and the extent of bearing defect severity, the measured vibration signals are non-stationary in nature. Non-stationary signals are effectively analyzed by wavelet transform technique, which is a popular and widely used time-frequency technique. The focus of this paper is to select a best possible mother wavelet for applying WT on bearing vibration signals. The two selection criteria includes minimum Shannon entropycriteria(MSEC) and Maximum Energy to Shannon Entropy Ratio criteriaR(s). This helps in effective bearing CM using WT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.