Customer relationship management (CRM) is an important element in all forms of industry. This process involves ensuring that the customers of a business are satisfied with the product or services that they are paying for. Since most businesses collect and store large volumes of data about their customers; it is easy for the data analysts to use that data and perform predictive analysis. One aspect of this includes customer retention and customer churn. Customer churn is defined as the concept of understanding whether or not a customer of the company will stop using the product or service in future. In this paper a supervised machine learning algorithm has been implemented using Python to perform customer churn analysis on a given data-set of Telco, a mobile telecommunication company. This is achieved by building a decision tree model based on historical data provided by the company on the platform of Kaggle. This report also investigates the utility of extreme gradient boosting (XGBoost) library in the gradient boosting framework (XGB) of Python for its portable and flexible functionality which can be used to solve many data science related problems highly efficiently. The implementation result shows the accuracy is comparatively improved in XGBoost than other learning models.
The Internet of Things (IoT) role is instrumental in the technological advancement of the healthcare industry. Both the hardware and the core level of software platforms are the progress resulted from the accompaniment of Medicine 4.0. Healthcare IoT systems are the emergence of this foresight. The communication systems between the sensing nodes and the processors; and the processing algorithms to produce output obtained from the data collected by the sensors are the major empowering technologies. At present, many new technologies supplement these empowering technologies. So, in this research work, a practical feature extraction and classification technique is suggested for handling data acquisition besides data fusion to enhance treatment-related data. In the initial stage, IoT devices are gathered and pre-processed for fusion processing. Dynamic Bayesian Network is considered an improved balance for tractability, a tool for CDF operations. Improved Principal Component Analysis is deployed for feature extraction along with dimension reduction. Lastly, this data learning is attained through Hybrid Learning Classifier Model for data fusion performance examination. In this research, Deep Belief Neural Network and Support Vector Machine are hybridized for healthcare data prediction. Thus, the suggested system is probably a beneficial decision support tool for multiple data sources prediction and predictive ability enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.