Des échantillons d’eau et de matière en suspension ont été prélevés le long de l’oued Moulouya et dans des lacs de carrière au niveau de l’ancien centre minier de Zeïda (Haute Moulouya, Maroc) en vue d’en évaluer la salubrité. Il est en effet important d’établir le degré et les causes éventuelles de dégradation de la qualité de ces eaux, compte tenu de leur usage à des fins tant domestiques qu’agricoles. Des résidus de traitement ont également été échantillonnés dans les haldes abandonnées.L’analyse des distributions et des variations spatio-temporelles des concentrations de Pb et As a permis de mettre en évidence que le centre minier a véritablement un impact sur la qualité des eaux de surface environnantes, malgré le caractère neutre à alcalin du drainage. Aucune ne rejoint les critères de l’Organisation mondiale de la santé en matière de Pb et As dans l’eau potable (10 µg/L), mais près de la moitié souscrit aux normes marocaines (50 µg/L). L’importance de la dégradation varie selon la saison et la localité, et le contraste entre sites a priori non dégradés et sites dégradés n’est pas toujours très prononcé. On observe même des variations à l’inverse des tendances attendues. Les résultats peuvent cependant être réconciliés en tenant compte de l’importance du transport particulaire par rapport au transport dissous au moment et au lieu de l’échantillonnage.Il appert que les minéralisations et les résidus miniers restés sur place peuvent constituer la principale source de pollution des eaux de surface de la région de Zeïda.The Upper Moulouya Basin was the location of extensive lead mining between 1930 and 1985, with three major operations near Aouli, Mibladen and Zeïda. The Moulouya drains about 7.5% of the Moroccan territory and provides drinking and irrigation water to many communities over its more than 500 km path. It is thus important to determine the impact of past mining activities on its water quality, since the mining sites were abandoned with little or no rehabilitation. This paper focuses on the Zeïda area, the uppermost of these mining centres on the Moulouya.About 630,172 t of lead concentrates (40‑70% Pb) were produced between 1972 and 1985 at Zeïda. Lead was mined from carbonate and sulphide mineral deposits (cerussite, 70%; galena, 30%) mixed with barite in stratiform ore bodies hosted by Permo-Triassic arkoses. Mining left 12 Mt and 70 Mt of tailings and wastes in fully exposed piles on each side of the Moulouya, as well as a dozen water-filled open-stopes. Mine drainage is of neutral pH, thanks to the low content of residual sulphide minerals and the availability of carbonate in the tailings and host rock. The river and some quarry-lakes are tapped to fulfill domestic, agricultural and stock-breeding needs. One lake is used to directly feed Zeïda’s water network (pop. 3,000), without any water treatment.The Moulouya, upstream and downstream of Zeïda, and four lakes were sampled twice in 2002 (dry period: February; wet period: April). Temperature, electric conductivity (EC), Eh and pH were measure...
The aim of this work was using the legume plant Anthyllis vulneraria L. (ecotype metallicolous) as a trap plant, in order to isolate metal-tolerant rhizobial strains from metal-contaminated soils from Morocco, with pollution indexes spanning three orders of magnitude. As bioindicator, soil bacterial density was inversely correlated to the pollution index. Forty-three bulk soil bacteria and sixty two bacteria from nodules were isolated. The resistance of bacteria from nodules to heavy metals was four to ten times higher than that of bulk soil bacteria, reaching high maximum tolerable concentrations for Cd (2 mM), Cu (2 mM), Pb (7 mM), and Zn (3 mM). Besides, some strains show multiple metal-tolerant abilities and great metal biosorption onto the bacterial surface. Amplification and restriction analysis of ribosomal 16S rDNA (ARDRA) and 16S ribosomal DNA (rDNA) sequencing were used to assess biodiversity and phylogenetic position among bacteria present in nodules. Our results suggest that a great diversity of non-rhizobial bacteria (alpha- and gamma-proteobacteria) colonize nodules of Anthyllis plants in contaminated soils. Taking together, our results evidence that, in polluted soils, rhizobia can be displaced by non-rhizobial (and hence, non-fixing) strains from nodules. Thus, the selection of metal-resistant rhizobia is a key step for using A. vulneraria symbioses for in situ phytoremediation.
Contaminated soils and mine tailings pose major environmental and agricultural problems worldwide. These problems may be partially solved by an emerging new technology: phytoremediation. This technique uses plants to extract soil contaminants from the ground. Thlaspi caerulescens is known to accumulate in their tissues several heavy metals from soil and aerial deposition. This study was conducted to screen plants growing on a contaminated site to determine their potential for metal accumulation. Seeds of T. caerulescens metallicolous have been collected in the vicinity of F.T. Laurent le Minier in the Pb-Zn mining district of les Malines (North of Montpellier, Southern France), and seeds of T. caerulescens nonmetallicolous were sampled on Larzac Plateau (North of Montpellier, Southern France). Soil substrates were collected from a mine site of Mibladen and Zaida (West, Morroco). Cultivated plant and surface soil samples were analyzed for zinc, lead, and cadmium concentrations by inductively coupled plasma mass spectrometry. A non-metallicolous (NM) ecotype of T. caerulescens and a metallicolous (M) ecotype are compared for Pb, Cd, and Zn accumulation in shoot and root in five metal-contaminated soils and one uncontaminated soil. The growth of individuals from uncontaminated soil was greater than that of individuals from metal-contaminated soils. The NM populations had markedly higher root/shoot ratio compared to M populations. The results indicate that both ecotypes of T.caerulescens are highly tolerant of zinc and Cd. Ecotype NM had constitutively higher Zn uptake capacity than the M ecotype. T. caerulescens species accumulate higher amount of Zn and Cd in their tissues in polluted soil and, in both of the two ecotypes, the root Pb concentrations were much greater than those of the shoot Pb contents. From both uncontaminated and metal-contaminated soils, we conclude that T. caerulescens are interesting material for phytoremediation of zinc and cadmium.
Les performances de croissance de Jatropha curcas L. ont été étudiées sur divers substrats de la mine de plomb abandonnée de Zaida (Haute Moulouya, Maroc). Jatropha curcas montre une bonne installation malgré les teneurs élevées en Pb, Cu, Zn et As dans les substrats expérimentaux. L’accumulation des éléments traces métalliques (ETM) dans les différents compartiments de Jatropha curcas dépend du type du substrat sur lequel elle est plantée (argile de découvrement, résidus miniers, sol témoin). Le faible taux de translocation des ETM confère à Jatropha curcas un grand pouvoir de phytostabilisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.