This paper develops a methodology to determine the economic feasibility of implementing offshore wave energy farms on the Portuguese continental coast. This methodology follows several phases: the geographic phase, the energy phase, the economic phase, and the restrictions phase. First, in the geographic phase, the height and the period of the waves, the bathymetry, the distance from the farm to the shore, from farm to shipyard, and from farm to port, are calculated. In the energy phase the energy produced by each wave energy converter is determined, and in the economic phase, the parameters calculated in the previous phases are used as input to find the economic parameters. Finally, in the restrictions phase, a limitation by the bathymetry will be added to the economic maps, whose value will be different depending on the floating offshore wave energy converter (WEC). In this study, three wave energy converters have been considered, Pelamis, AquaBuOY, and Wave Dragon, and several scenarios for electric tariffs have been taken into account. The results obtained indicate what the best WEC is for this study in terms of its levelized cost of energy (LCOE), internal rate of return (IRR), and net present value (NPV), and where the best area is to install wave energy farms.
This paper assesses the economic feasibility of offshore wind farms installed in deep waters considering their internal rate of return (IRR), net present value (NPV), and levelized cost of energy (LCOE). The method proposed has three phases: geographic phase, economic phase, and restrictions phase. The purpose of the geographic step is to obtain the input values, which will be used in the economic phase. Then, the economic parameters are calculated considering the inputs provided previously. Finally, the bathymetric restriction is added to the economic maps. The case study focused on the Cantabric and North-Atlantic coasts of Spain, areas that have not been studied previously in economic terms regarding floating offshore wind technology. Moreover, several alternatives have been considered, taking into account the type of floating offshore wind structure and the electric tariff. Results indicate which is the best floating offshore wind structure with respect to LCOE, IRR, and NPV, and where is the best location for the connection of a floating offshore wind farm in the region selected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.