We present an experimental and numerical study of the damage and ablation thresholds at the surface of a dielectric material, e.g., fused silica, using short pulses ranging from 7 to 300 fs. The relevant numerical criteria of damage and ablation thresholds are proposed consistently with experimental observations of the laser irradiated zone. These criteria are based on lattice thermal melting and electronic cohesion temperature, respectively. The importance of the three major absorption channels (multi-photon absorption, tunnel effect, and impact ionization) is investigated as a function of pulse duration (7-300 fs). Although the relative importance of the impact ionization process increases with the pulse duration, our results show that it plays a role even at short pulse duration (<50 fs). For few optical cycle pulses (7 fs), it is also shown that both damage and ablation fluence thresholds tend to coincide due to the sharp increase of the free electron density. This electron-driven ablation regime is of primary interest for thermal-free laser-matter interaction and therefore for the development of high quality micromachining processes.
International audienceThe paper is focused on the importance of accurate determination of surface damage/ablation threshold of a dielectric material irradiated with femtosecond laser pulses. We show that different damage characterization techniques and data treatment procedures from a single experiment provide complementary physical results characterizing laser–matter interaction. We thus compare and discuss two regression techniques, well adapted to the measurement of laser ablation threshold, and a statistical approach giving the laser damage threshold and further information concerning the deterministic character of femtosecond damage. These two measurements are crucial for laser micromachining processes and high peak-power laser technology in general
International audienceSurface ablation of a dielectric material (fused silica) by single femtosecond pulses is studied as a function of pulse duration (7-450 fs) and applied fluence (F (th)< F < 10F (th)). We show that varying the pulse duration gives access to high selectivity (with resolution similar to 10 nm) for axial removal of matter but does not influence the transverse ablation selectivity, which only depends on the normalized applied fluence F/F (th). The ablation efficiency is shown to be inversely dependent on the pulse duration and saturates with respect to the applied fluence earlier at ultra-short pulse durations (a parts per thousand currency sign30 fs). The deduced optimal fluence F (opt) corresponding to the highest ablation efficiency for each pulse width defines two regimes of laser application. Below F (opt), the removed material depth can be accurately adjusted in a large range (similar to 40-200 nm) as a function of the applied fluence and the morphology of the ablated pattern almost reproduces the Gaussian beam distribution. Above F (opt), the material removal depth tends to saturate and the morphology of the ablated pattern evolves to a top-hat distribution. The coupled evolution of depth and morphology is related to the dynamics of formation of dense plasma at the surface of the material, acting as an ultra-fast optical shutter
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.