Key words:ABSTRACT Minimax control Regulators Distributed parameter systems Optimization Gradient projection method Point and mobile limit control Тhe problem of minimax control synthesis for objects that are described by a two-dimensional heat conduction equation of parabolic type is solved in the paper. It is assumed that the control object functions under uncertainty conditions, and the perturbations acting on the object belong to some given hyperelipsoid. The problem of constructing a regulator in the state of an object for cases of point and mobile limit control is considered in accordance with the integral-quadratic quality criterion. With the help of numerical optimization methods, the problem of determining the optimal location of concentrated regulators at the boundary of a rectangular region and the problem of finding the optimal law of motion of a mobile limit regulator is solved. The problem is posed and solved in the minimax formulation when there is an optimal control on the state of the object functioning under uncertainty conditions so that the regulator minimizes the maximum control error from a set of possible values, taking into account the most unfavorable perturbations that can act on the object or system. In this case, the perturbations of the object belong to a given limited region. The results of computational experiments illustrating the effectiveness of the constructed limiting concentrated and moving regulators are presented. The obtained results indicate that the controls found in the work are indeed optimal and ensure minimum errors (deviations from the given state) of the functioning of the system and energy costs for the implementation of control under given conditions and in the absence of any information on external action other than the region of permissible perturbations.In the work, for the first time, a minimax approach was used to control the objects described by the two-dimensional parabolic type thermal conductivity equation; the theoretical positions of synthesis of minimax regulators for cases of lumped boundary (point) and moving regulators are considered; algorithmic software is developed that allows to simulate the dynamics of the constructed minimax-regulators and to investigate the corresponding transients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.