With digital data being abundant in today's world, competing organizations desire to gain insights about the market, without putting the privacy of their confidential data at risk. This paper provides a new dimension to the problem of Privacy Preserving Distributed Association Rule Mining (PPDARM) by extending it to a distributed temporal setup. It proposes extensions of public key based and non-public key based additively homomorphic techniques, based on efficient private matching and Shamir's secret sharing, to privately decipher these global cycles in cyclic association rules. Along with the theoretical analysis, it presents experimental results to substantiate it. This paper observes that the Secret Sharing scheme is more efficient than the one based on Paillier homomorphic encryption. However, it observes a considerable increase in the overhead associated with the Shamir's secret sharing scheme, as a result of the increase in the number of parties. To reduce this overhead, it extends the secret sharing scheme without mediators to a novel model with a Fully Trusted and a Semi Trusted Third Party. The experimental results establish this functioning for global cycle detections in a temporal setup as a case study. The novel constructions proposed can also be applied to other scenarios that want to undertake Secure Multiparty Computation (SMC) for PPDARM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.