In this paper, we study the effect of restoration force caused by the limited size of a small metallic nanoparticle (MNP) on its linear response to the electric field of incident light. In a semiclassical phenomenological Drude-like model for small MNP, we consider restoration force caused by the displacement of conduction electrons with respect to the ionic positive background taking into account a free coefficient as a function of diameter of nanoparticle (NP) in the force term obtained by the idealistic Thomson model in order to adjust the classical approach. All important mechanisms of the energy dissipation such as electron-electron, electron-phonon and electron-NP surface scatterings and radiation are included in the model. In addition a correction term added to the damping factor of mentioned mechanisms in order to rectify the deficiencies of theoretical approaches. For determining the free parameters of model, the experimental data of extinction cross section of gold NPs with different sizes doped in the glass host medium are used and a good agreement between experimental data and results of our model is observed. It is shown that by decreasing the diameter of NP, the restoration force becomes larger and classical confinement effect becomes more dominant in the interaction. According to experimental data, the best fitted parameter for the coefficient of restoration force is a third order negative powers function of diameter. The fitted function for the correction damping factor is proportional to the inverse squared wavelength and third order power series of NP diameter. Based on the model parameters, the real and imaginary parts of permittivity for different sizes of gold NPs are presented and it is seen that the imaginary part is more sensitive to the diameter variations. Increase in the NP diameter causes increase in the real part of permittivity (which is negative) and decrease in the imaginary part. :1912.11245v1 [cond-mat.mtrl-sci]
arXiv
In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1−ω2, which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.
The motivation of the present work is the study of self-focusing of an intense laser beam propagating through a magnetized bulk medium consisting of metallic nanoparticles. Using a perturbative method, the wave equation describing the nonlinear interaction of the intense laser beam with metallic magnetized nanoparticles is derived. Evolution of the laser spot size for the circular polarization with the Gaussian profile is considered. A graphite nanoparticle medium is introduced as a good candidate for self-focusing of electromagnetic waves with the wavelength in the micrometer range where plasmon resonance occurs. In such a frequency area, using a few hundred Tesla external magnetic field can substantially improve the focusing property of the medium. The threshold power for self-focusing at least two orders of magnitude is less than that for the identical case of the plasma medium. In addition, a typical external magnetic field for improving the focusing property of the medium is much lower than other conventional nonlinear media like plasma.
The present study is aimed to investigate the problem of modulation instability of an intense laser beam in the hot magnetized plasma. The propagation of intense circularly polarized laser beam along the external magnetic field is considered using a relativistic fluid model. The nonlinear equation describing the interaction of laser pulse with magnetized hot plasma is derived in the quasi-neutral approximation, which is valid for hot plasma. Nonlinear dispersion equation for hot plasma is obtained. For left- and right-hand polarizations, the growth rate of instability is achieved and the effect of temperature, external magnetic field, and kind of polarization on the growth rate is considered. It is observed that for the right-hand polarization, increase of magnetic field leads to the increasing of growth rate. Also for the left-hand polarization, increase of magnetic field inversely causes decrease of the growth rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.