Objective High channel count electrode arrays allow for the monitoring of large-scale neural activity at high spatial resolution. Implantable arrays featuring many recording sites require compact, high bandwidth front-end electronics. In the present study, we investigated the use of a small, light weight, and low cost digital current-sensing integrated circuit for acquiring cortical surface signals from a 61-channel micro-electrocorticographic (μECoG) array. Approach We recorded both acute and chronic μECoG signal from rat auditory cortex using our novel digital current-sensing headstage. For direct comparison, separate recordings were made in the same anesthetized preparations using an analog voltage headstage. A model of electrode impedance explained the transformation between current- and voltage-sensed signals, and was used to reconstruct cortical potential. We evaluated the digital headstage using several metrics of the baseline and response signals. Main results The digital current headstage recorded neural signal with similar spatiotemporal statistics and auditory frequency tuning compared to the voltage signal. The signal-to-noise ratio of auditory evoked responses (AERs) was significantly stronger in the current signal. Stimulus decoding based on true and reconstructed voltage signals were not significantly different. Recordings from an implanted system showed AERs that were detectable and decodable for 52 days. The reconstruction filter mitigated the thermal current noise of the electrode impedance and enhanced overall SNR. Significance We developed and validated a novel approach to headstage acquisition that used current-input circuits to independently digitize 61 channels of μECoG measurements of the cortical field. These low-cost circuits, intended to measure photo-currents in digital imaging, not only provided a signal representing the local cortical field with virtually the same sensitivity and specificity as a traditional voltage headstage but also resulted in a small, light headstage that can easily be scaled to record from hundreds of channels.
Gait abnormalities are one of the distinguishing symptoms of patients with Parkinson's disease (PD) that contribute to fall risk. Our study compares the gait parameters of people with PD when they walk through a predefined course without assistance, with a conventional walker, and with a motorized walker under different speed cues. Six PD subjects were recruited at the New York Institute of Technology College of Osteopathic Medicine to participate in this study. Spatial posture and gait data of the test subjects were collected via a VICON motion capture system. We developed a framework to process and extract gait features and applied statistical analysis on these features to examine the significance of the findings. The results showed that motorized walkers with haptic cues significantly improved gait symmetry of PD subjects. Specifically, the asymmetry index of the gait cycle time was reduced from 6.7% when walking without assistance to 0.56% and below when using a walker. Furthermore, the double support time of a gait cycle was reduced by 4.88% compared to walking without assistance.
We investigated the impact of sleep and training load of Division -1 women's basketball players on their game performance and injury prediction using machine learning algorithms. The data was collected during a pandemic-condensed season with unpredictable interruptions to the games and athletic training schedules. We collected data from sleep monitoring devices, training data from coaches, injury reports from medical staff, and weekly survey data from athletes for 22 weeks. With proper data imputation, interpretable feature set, data balancing, and classifiers, we showed that we could predict game performance and injuries with more than 90% accuracy. More importantly, our F1 and F2 scores of 0.94 and 0.83 for game performance and injuries, respectively, show that we can use the prediction for informative analysis in the future for coaches to make insightful decisions. Our data analysis also showed that collegiate athletes sleep less than the recommended hours (6-7 instead of 8 hours). This coupled with a long hiatus in games and training increases the risk of injury. Varied training and higher heart rate variability (due to better quality sleep) indicated a better performance, while athletes with poor sleep patterns, were more prone to injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.